ð æ¬èšäºã«ã€ããŠã®ã泚æ
æ¬èšäºã¯ãAI/LLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒã®æŽ»çšã«é¢ããäžè¬çãªæ å ±æäŸãç®çãšãããã®ã§ãããç¹å®ã®äŒæ¥ã»å£äœã»å人ãè©äŸ¡ã»æ¹å€ã»æšå¥šããæå³ã¯ãããŸããã
èšèŒãããŠããäºäŸã»æ°å€ã»çµ±èšã¯ãå ¬éæ å ±ãè€æ°ã®äºäŸãããšã«æœè±¡åã»äžè¬åããã¢ãã«ã±ãŒã¹ã§ãããç¹å®ã®ç°å¢ãæ¡ä»¶ã«ãããŠå¿ ãããåæ§ã®çµæãåŸãããããšãä¿èšŒãããã®ã§ã¯ãããŸããã
ãŸããææã广ã¯ãå°å ¥ç¯å²ã»ããŒã¿å質ã»éçšäœå¶ã»æ³èŠå¶ã»ç€Ÿå èŠçšãªã©ã®æ¡ä»¶ã«ãã£ãŠå€§ããç°ãªãå¯èœæ§ããããŸããå®éã®å°å ¥ã«ããã£ãŠã¯ãé¢é£ããæ³ä»€ã»èŠå¶ã»ç€Ÿå ã«ãŒã«ãå¿ ãã確èªã®äžãèªå·±ã®è²¬ä»»ãšå€æã«ãããŠå®æœããŠãã ããã
- 第0ç« ïŒAIå°å ¥ã¯ãæè¡ãããžã§ã¯ããã§ã¯ãªããçµå¶æŠç¥ãã§ãã
- 第1ç« ïŒAI/LLMã®æ¬è³ªãšå
šäœå â ãæèã®ä»£è¡ãã§ã¯ãªããç¥ççç£ã®åèšèšè£
眮ããž
- ð§ ã¯ããã«ïŒãå°å ¥ãã§ã¯ãªããåèšèšããåãããæä»£ãž
- 1ïžâ£ AI/LLMãšã¯äœã â ãæèã®ä»£è¡è ãã§ã¯ãªããæèçŽ æã®çæè£ 眮ã
- 2ïžâ£ ãªãä»âAIåæâãé¿ããããªãã®ã â ãèªç¶èšèªãUIã«ãªãæä»£ãã®å°æ¥
- 3ïžâ£ æåã®éµã¯â3æ¬æ±ã®èšèšâ â KPIãšäŸ¡å€åµåºã«çŽçµããã
- ð ãŸãšã â AIã¯âããŒã«âã§ã¯ãªãâèšèšèŠçŽ âã§ãã
- 第2ç« . ãå¿
é æé€ããšããŠã®LLM â èæ¯ãšæçŸ©
- â ãå®éšæè¡ããããæŠç¥åºç€ããž â äžå¯éãª3段éé²å
- â¡ ã¯ãŒã¯ãããŒãæ ¹æ¬ããå€ãã â ãAIãäžæ¬¡æ¡ã人éã倿ã
- ⢠ãæäœã§ãããã§ã¯äžåå â âAIåæã§èšèšããåâãç«¶äºå
- ⣠ãAIæé€ãã¯âå ±éåºç€âãž â å人ããçµç¹ãŸã§
- 第3ç« ïŒLLMã®ä»çµã¿ãå
éšçè§£ã
- â Transformer â æèããæ§é ããšããŠèªãâé è³â
- â¡ ããŒã¯ã³åãšç¢ºçäºæž¬ â ãèãããã®ã§ã¯ãªããæ¬¡ãéžã¶ã
- ⢠åã蟌ã¿ïŒEmbeddingïŒ â æå³ãâ空éâã§æ±ã
- ⣠LLMã®å šäœããã»ã¹ â å ¥åããåºåãŸã§ã®æµã
- â ãŸãšãïŒãAIã¯âæèè£ çœ®âã§ã¯ãªãâäºæž¬è£ 眮âã
- ð æ§é ãâåŸæäžåŸæâãçã
- 第4ç« ïŒåŸæïŒäžåŸæãããã³ã°ã掻çšå€æã
- ð§ ã¯ããã«ïŒãâã©ãã«äœ¿ããâã誀ããšãAIãããžã§ã¯ãã¯å€±æããã
- â åŸæãªããšïŒãéæ§é æ å ±ã®âæŽçã»åæ§æâã
- â¡ äžåŸæãªããšïŒãå³å¯æ§ã»èšæ¶ã»ç¶æ 管çããæ¬è³ªã®é å
- â¢ ãæŠç¥çãããã³ã°ãïŒ4ã€ã®æŽ»çšãŸãŒã³ã§å€æãã
- ⣠ãè£å®ããŠããã¡ãªé åããååšããçç±
- â€ æ¬¡ç« ãžã®æ©æž¡ãïŒãè£å®é£æºããâã¢ãŒããã¯ãã£âãšããŠèšèšãã
- 第5ç« ïŒ4ã€ã®ã¢ãŒããã¯ãã£ãèšèšè«ã
- ð§ â RAG â å€éšç¥èãšâæ¥ç¶âããïŒKnowledge LayerïŒ
- ð€ â¡ Agent â æèã»å€æãâèªååâããïŒReasoning LayerïŒ
- ð§ ⢠Function Calling â AIã«âæãšè¶³âãäžããïŒAction LayerïŒ
- 𧬠⣠Fine-tuning â ã¢ãã«ãâèªç€Ÿå°çšè³âã«ããïŒCore LayerïŒ
- ð ã¢ãŒããã¯ãã£æ¯èŒè¡šïŒROIã»æ¡ä»¶ã»ããã«ããã¯ïŒ
- ðª å°å ¥ããŒããããïŒæ®µéçãªãèšèšãšç©ã¿äžãã
- â æ¬ç« ãŸãšãïŒãAIå°å ¥ããšã¯âèšèšâã®åé¡ã§ãã
- 第6ç« ïŒå°å
¥ããã»ã¹7ã¹ããããå®åèšèšã
- â Step 1. ç®çå®çŸ©ãšæ¥ååæ â ãAIãäœã解決ããã®ãããæç¢ºã«ãã
- â Step 2. ãŠãŒã¹ã±ãŒã¹åªå åºŠæ±ºå® â ã广 à å®çŸå¯èœæ§ãã§åã¡çãéžã¶
- â Step 3. ããŒã¿æºåãšRAGèšèš â ãç¥èã®è³ªããç²ŸåºŠãæ±ºãã
- â Step 4. ã¢ãã«éžå®ãšå¶çŽæŽç â ãæåŒ·ãã§ã¯ãªããæé©ããéžã¶
- â Step 5. ããã³ããèšèšãšè©äŸ¡èšèš â ãåºå仿§æžããšãåæ Œåºæºããèšèšãã
- â Step 6. PoCãšæ¹å â ãåäœæ€èšŒãã§ã¯ãªãããºã¬æ€åºã
- â Step 7. éçšã»æ¹åã»å¹ææž¬å® â ãå°å ¥ããŠãããæ¬çªã
- â æçµãã§ãã¯ãªã¹ãïŒ5ã€ã®YESïŒ
- ð§ æ¬ç« ãŸãšãïŒãAIå°å ¥ïŒæ¥ååèšèšãããžã§ã¯ãã
- 第7ç« ïŒå°å ¥å€±æãšå¯Ÿçããªã¹ã¯éç®ã
- 第8ç« ïŒæåäºäŸããåŠã¶å°å
¥ã®æé©è§£ â åçŸæ§ã®ãããåãŠãæŽ»çšæŠç¥ã
- 1ïžâ£ äºäŸâ ïŒåãåãã察å¿èªåå â ãç¥èããšãæå³ããæ¥ç¶ããèšèš
- 2ïžâ£ äºäŸâ¡ïŒå¶æ¥ææ¡è³æã®èªåçæ â ãAIãèµ·ç¹ã«ãããçºæ³è»¢æ
- 3ïžâ£ äºäŸâ¢ïŒãã¬ããžå ±æ â ãæ¢çŽ¢ããããæµéããž
- 4ïžâ£ äºäŸâ£ïŒããŒãœãã©ã€ãºæšèŠ â äžå°BtoCã§ãææãåºã
- 5ïžâ£ äºäŸâ€ïŒæ°èŠïŒïŒæ¥åºäºæž¬ãšèªåè²©ä¿ â äžå°åºèã§ã®åçŸæ§
- æåäºäŸã«å ±éããã5ã€ã®ååã
- æååçŸã®ã3ã€ã®åææ¡ä»¶ã
- ð¯ ãŸãšãïŒãæåãšã¯âèšèšåâã®ææã§ããã
- 第9ç« ïŒä»åŸã®å±æãšæŠç¥çã¢ãããŒã â 2025幎以éã®AI掻çšãèªã¿è§£ã
- â æè¡ã®é²åïŒãçæããããèªåŸã»è€åããž â æ®µéçããŒãããã
- â¡ æ¥åã®é²åïŒãAIåæèšèšããžã®ãã©ãã€ã ã·ãã
- ⢠çµç¹ã®é²åïŒã䜿ãã人ããããèšèšã§ãã人ããž
- ⣠瀟äŒã»ç£æ¥æ§é ã®é²åïŒãAIåæçµæžããžã®ç§»è¡
- †ãªã¹ã¯ãšå¶çŽ â æåã®âåææ¡ä»¶âãæŽãã
- ãªã¹ã¯åªå 床ãããªã¯ã¹
- ⥠å®è£ ããŒãããããšãä»ããçæãã¹ããå®åã¢ã¯ã·ã§ã³
- äžå±€æŠç¥ à KPIããŒãããã
- â å®åè åããã§ãã¯ãªã¹ãïŒè¡åã¿ã¹ã¯ïŒ
- ð KPIéçšãã³ãã¬ãŒãïŒæž¬å®ã»è©äŸ¡äœå¶ïŒ
- ð§ æ¬ç« ãŸãšãïŒãAIã¯âæªæ¥ã®éå ·âã§ã¯ãªãâæªæ¥ãã®ãã®âã
- 第10ç« ïŒå°å
¥ååŸã«ãããã誀解ãšå¿ççéå£ â æåçã2åã«ããâèªèèšèšâ
- ð§ ã¯ããã«ïŒã誀解ãã¯âè§£ãâã ãã§ãªãâèšèšããâ察象ã§ãã
- ð 誀解ã®4å±€ããã â æè¡ã»éçšã»çµç¹ã»å¿çã®æ§é åæ
- ð§ æè¡ç誀解 â ãAIã¯äžèœããééããªãããäžåºŠå ¥ããã°çµããã
- ð§ éçšç誀解 â ãPoCæåïŒæ¬çªæåãã粟床ãäœãïŒAIã®ããã
- ð¢ çµç¹ç誀解 â ãAIã¯äººã眮ãæããããçŸå Žã¯å察ããã
- ð§ å¿çç誀解 â èªç¥ãã€ã¢ã¹ãšãå®å šã§ãªãç°å¢ããæåãé»ã
- ð 誀解ãšèšèšèŠä»¶ã®ãããªã¯ã¹ïŒç·åŸ©ç¿ïŒ
- ð ROIã®åºæºå€ïŒçµ±åããŒã¿ïŒ
- ð§ æ¬ç« ã®çµè«ïŒã誀解ãã¯âè§£ãâã ãã§ãªãâèšèšâã«æŽ»ãã
- ð åèæç®äžèЧ
- 第11ç« . ãŸãšããšæ¬¡ã®äžæ â AIå°å
¥ãâæŠç¥âããâçŸå®âãž
- ð§ ã¯ããã«ïŒãAIå°å ¥ãã¯âãŽãŒã«âã§ã¯ãªãâåºçºç¹âã§ãã
- â æ¬èšäºã§æŽçããã10ã®æ žå¿ãã€ã³ããïŒç·åŸ©ç¿ïŒ
- ð æ¬¡ã®äžæ â ãAIãçµã¿èŸŒãã æªæ¥ããèšèšãã
- â Step 1. çŸç¶æ£åžã â æåã®50ïŒ ã¯ããã§æ±ºãŸã
- â Step 2. å°ãã詊ã â âæåäœéšâãå ã«äœã
- â Step 3. æ¡åŒµãšçµ±å â âAIåæOSâãžã®é²å
- ð§ æŠç¥çèŠç¹ïŒãAIãâ䜿ãåŽâãããâAIã§æªæ¥ãåµãåŽâãžã
- ð æåæºå床ãã§ãã¯ãªã¹ã
- ðºïž äžé·æããŒããããïŒ1ã3幎ïŒ
- ð¯ æçµçµè«ïŒãæªæ¥ã¯âå°å ¥âã§ã¯ãªãâèšèšâããçãŸããã
- ð åèæç®
- ð å 責äºé
第0ç« ïŒAIå°å ¥ã¯ãæè¡ãããžã§ã¯ããã§ã¯ãªããçµå¶æŠç¥ãã§ãã
2025幎ãçæAIãšLLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒã¯ããã¯ãâ話é¡ã®æ°æè¡âã§ã¯ãããŸããã
ããã¯ä»ã**äŒæ¥ã®æŠç¥ã»æ¥åã»çµç¹æ§é ãã®ãã®ãåèšèšãããçµå¶ã®OSã**ãžãšé²åãã€ã€ãããŸãã
ãããçŸå®ã«ã¯ããPoCã¯æåããã®ã«æ¬çªã§æ¢ãŸã£ãããæã£ããããªææãåºãªãããšãã£ã声ãåŸãçµ¶ã¡ãŸããã
å€ãã®äŒæ¥ãã€ãŸããçç±ã¯ã**æè¡ãã®ãã®ã§ã¯ãªãããèšèšããéçšããçµç¹ããšãã£ãâæ§é ã®æ¬ é¥â**ã«ãããŸãã
æ¬ã¬ã€ãã¯ããããã倱æã®æ¬è³ªãèžãŸããAIå°å ¥ããæŠç¥ããããçŸå®ããžãšèœãšã蟌ãããã®11ç« æ§æã®å®è·µæžã§ãã
- 第1ç« ã第4ç« ã§ã¯ããAIã®æ¬è³ªãããåŸæã»äžåŸæããæŽ»çšé åããæ£ããçè§£ããæŠç¥èšèšã®åºç€ãç¯ããŸãã
- 第5ç« ã第7ç« ã§ã¯ããã¢ãŒããã¯ãã£èšèšããå°å ¥ããã»ã¹ãã倱æãã¿ãŒã³ããªã©å®è£ ã®æ žå¿ã解説ããŸãã
- 第8ç« ã第10ç« ã§ã¯ããæåäºäŸããæªæ¥æŠç¥ããFAQãããåçŸæ§ãšå°æ¥æ§ãå°ãåºããŸãã
- ãããŠæçµç« ã§ã¯ããå°å ¥ãçŸå®ã«å€ããäžæããšã次ã®3幎ã®ããŒããããããæç€ºããŸãã
æ¬æžã®ç®çã¯ã**ãAIã䜿ããããã«ãªãããšãã§ã¯ãªãããAIãåæã«æªæ¥ãèšèšã§ããããã«ãªãããšã**ã§ãã
èªã¿çµããé ã«ã¯ããã©ãã«å°å
¥ããããã§ã¯ãªãããAIã軞ã«ã©ããªæªæ¥ãæããããšããæèã«ã·ããããŠããã¯ãã§ãã
第1ç« ïŒAI/LLMã®æ¬è³ªãšå šäœå â ãæèã®ä»£è¡ãã§ã¯ãªããç¥ççç£ã®åèšèšè£ 眮ããž
ð§ ã¯ããã«ïŒãå°å ¥ãã§ã¯ãªããåèšèšããåãããæä»£ãž
AI/LLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒã¯ããã¯ããå°å
¥ãããã©ããããæ€èšããæ®µéãéããŸããã
仿¥ã®ç«¶äºç°å¢ã§æ¬è³ªçã«åãããŠããã®ã¯ã**ãAIãåæãšãªãäžçã§ãããžãã¹ã»æ¥åã»äŸ¡å€åµåºã®æ§é ãã©ãåèšèšãããã**ã§ãã
æ¬ç« ã§ã¯ã以éã®å šäœåãçè§£ããããã®åºç€ãšããŠã以äžã®3ã€ã®èŠç¹ããAI掻çšã®æ¬è³ªãæŽçããŸãïŒ
- AI/LLMã®æ¬è³ªçãªä»çµã¿ãšåœ¹å²
- ãªãâä»âãã®å°å ¥ãäžå¯é¿ãªã®ã
- ææãå·Šå³ããã3æ¬æ±ãã®èšèšåç
1ïžâ£ AI/LLMãšã¯äœã â ãæèã®ä»£è¡è ãã§ã¯ãªããæèçŽ æã®çæè£ 眮ã
ChatGPTã®ãããªçæAIãâ人éã®ããã«èããååšâãšèª€è§£ãã人ã¯å°ãªããããŸããã
ããããLLMã¯æå³ãæèãæããããæ¬¡ã«åºçŸããèªã®ç¢ºçããèšå€§ãªæèããçµ±èšçã«äºæž¬ããŠåºåããèšèªã¢ãã«ã§ãã
ã€ãŸããAIã¯âæèâããã®ã§ã¯ãªãã**ãæèã®åææã**ãé«éãã€å€§éã«çæããè£ çœ®ã§ãã
- â 誀解ãããæåŸ ïŒãAIãèªåã®ä»£ããã«èããŠãããã
- â æ£ããçè§£ïŒãAIãâæèçŽ æâãçã¿åºãããšã§ã人éã¯ãã髿¬¡ãªå€æã»åµé ã«éäžã§ããã
ãã®ã圹å²ã®åå®çŸ©ããæ¬è³ªçè§£ã®ç¬¬äžæ©ã§ããAIã¯äººéã®æèã®â代æ¿åâã§ã¯ãªããâç¥çè£å©èŒªâãšããŠåµé æ§ãå éããè£ çœ®ãªã®ã§ãã
ããã«éèŠãªã®ã¯ããAIãæèããªããããšãããã匷ã¿ã§ããç¹ã§ãã
ããããã«äººéã®åèŠãåæã«çžãããã倿§ãªéžæè¢ã»ä»®èª¬ã»çŽ æãæç€ºã§ããââããããããåŸè¿°ãããæææ±ºå®æ¯æŽããèªåŸçææ¡ãã®åºç€ãšãªããŸãã
2ïžâ£ ãªãä»âAIåæâãé¿ããããªãã®ã â ãèªç¶èšèªãUIã«ãªãæä»£ãã®å°æ¥
2022幎11æã®ChatGPTç»å Žã¯ããGUIïŒã¯ãªãã¯ïŒããAPIïŒã³ãŒãïŒãã«ç¶ã第äžã®ã€ã³ã¿ãŒãã§ãŒã¹é©åœã§ããã
æä»£ | äž»æµã€ã³ã¿ãŒãã§ãŒã¹ | æçŸ© |
---|---|---|
1990ã2000幎代 | GUIïŒã¯ãªãã¯æäœïŒ | 誰ããã³ã³ãã¥ãŒã¿ãæäœå¯èœã« |
2010幎代 | APIïŒã³ãŒã飿ºïŒ | èªååã»é£æºã®èªç±åºŠãæ¡å€§ |
2020幎代ã | LLMïŒèªç¶èšèªïŒ | èšèã ãã§é«åºŠãªæ¥åæäœãå¯èœã« |
ãã®ãã©ãã€ã ã·ããã«ã¯ã次ã®ãããªâæè¡çå¿ ç¶æ§âããããŸãïŒ
- ææ§ãªèªç¶èšèªæç€ºãAIãè§£éã»è£å®ã§ãã
- éæ§é ããŒã¿ãåŠçãã人éãšã®I/Oæ©æŠãæå°åã§ãã
- éãšã³ãžãã¢å±€ã§ãèªååã»åæã»ææ¡ãå®çŸã§ãã
çµæãšããŠãã¯ãŒã¯ãããŒã®æ§é ãã®ãã®ãæ ¹æ¬ããå€ãããŸãïŒ
åŸæ¥ã®æµã | LLM掻çšåŸã®æµã |
---|---|
人éãæ§æ³ â 人éãå®è£ | AIãäžæ¬¡æ¡çæ â 人éãè©äŸ¡ã»å€æ |
æ å ±ããæ¢ãã | æ å ±ããçæãããã |
èªååã¯å°éè·ã®é å | 誰ã§ãããã³ããã§èªååå¯èœ |
ð McKinseyãState of AI 2024ãã«ãããšãFortune 500äŒæ¥ã®çŽ73ïŒ ãPoCãŸãã¯éå®å°å ¥ãå«ãçæAIãæŽ»çšããŠãããå°å ¥äŒæ¥ã¯éå°å ¥äŒæ¥ã«æ¯ã¹ãŠæ¥åã¹ããŒããå¹³å2.8åãROIãçŽ1.7ååäžããŠããŸãïŒâ»èª¿æ»å¯Ÿè±¡ïŒFortune 500äŒæ¥500瀟ã2024幎3ææç¹ïŒã
ããã¯ãAIã䜿ãã°åãŠãããšããåçŽãªè©±ã§ã¯ãããŸããã
ãAIãåæãšããçµç¹èšèšããšãåŸæ¥åã®äººåäŸåçµç¹ãã®éã§ãæ°å¹Žä»¥å
ã«äžå¯éçãªæ§é æ Œå·®ãçãŸããã®ã§ãã
3ïžâ£ æåã®éµã¯â3æ¬æ±ã®èšèšâ â KPIãšäŸ¡å€åµåºã«çŽçµããã
AIå°å ¥ã®ææã決å®ã¥ããã®ã¯ã¢ãã«ã®æ§èœã§ã¯ãªãã**ãã©ã®ãããªèšèšææ³ã§äœ¿ããã**ã§ããç¹ã«éèŠãªã®ããæ¬¡ã®3æ¬æ±ã§ã
èšèšè»ž | ãã§ãŒãº | åœ¹å² | KPIã»äŸ¡å€æ¥ç¶äŸ |
---|---|---|---|
ðïž ããŒã¿èšèš | åïŒå ¥åæºåïŒ | AIãåç §ãããç¥èæºããæŽå | åçç²ŸåºŠã»æ€çŽ¢æéã»åçŸç |
ð§âð» ããã³ããèšèš | äžïŒçæå¶åŸ¡ïŒ | åºåã®æ¹åæ§ã»ç²åºŠã»åœ¢åŒãå¶åŸ¡ | æ£ççã»èªååçã»æç« å質 |
ð è©äŸ¡èšèš | åŸïŒçµæè©äŸ¡ïŒ | ææã枬å®ã»æ¹åããROIãæå€§å | KPIéæåºŠã»ã¬ãã¥ãŒåæžç |
ãã®3æ¬æ±ã¯åãªãæè¡èŠçŽ ã§ã¯ãªãã**æ¥åKPIïŒäŸïŒå¯Ÿå¿æéãå¶æ¥å¹çãç¥è掻çšçãªã©ïŒãšçŽçµãããèšèšèŠçŽ ãã§ãã
æåäŒæ¥ã¯ããããâé£åããä»çµã¿âãšããŠéçšããåçºçãªææã«ãšã©ãŸããããç¶ç¶çãªç¥ççç£æ§ã®åäžã**ãå®çŸããŠããŸãã
ð ãããã倱æãã¿ãŒã³
- â ããã³ããèšèšã ãã«æ³šåããããŒã¿æŽåãäžååãªããåºåãäžå®å®
- â è©äŸ¡ææšãææ§ã§ãæ¹åã«ãŒããåããªã
ð æåãã¿ãŒã³ïŒäºäŸïŒ
- â RAGïŒFAQæŽçã§åç粟床93ïŒ ã»å¯Ÿå¿å·¥æ°40ïŒ åæž
- â KPIãšé£åããè©äŸ¡ææšã«ãããæ¹åããã»ã¹ãèªåå
ð ãŸãšã â AIã¯âããŒã«âã§ã¯ãªãâèšèšèŠçŽ âã§ãã
- â LLMã¯ãæèã®ä»£è¡è ãã§ã¯ãªãããæèçŽ æãçæããè£ çœ®ãã§ãã
- â æåã®éµã¯ãããŒã¿ã»ããã³ããã»è©äŸ¡ããšãã3æ¬æ±ã®âèšèšâã«ãã
- â 3æ¬æ±ã¯æ¥åKPIãROIãšçŽçµãã䟡å€åµåºã®åçŸæ§ãæ ä¿ãã
- â ãè£å©ããããååããžã®é²åãå§ãŸã£ãŠãããå°å ¥ããªããã°âAIçµç¹âãšã®æ Œå·®ã¯äžå¯éçã«ãªã
â»æ¬ç« ã«å«ãŸããæ°å€ã»å²åã®äžéšã¯äŸ¿å®çãªäŸç€ºã§ããã宿ž¬å€ã§ã¯ãããŸãããåºå žããŒã¿ã¯McKinseyãState of AI 2024ãïŒ2024幎3æãFortune 500äŒæ¥500瀟調æ»ïŒãåºã«ããŠããŸãã
æ¬¡ç« ã§ã¯ããã®ãåèšèšã®å¿ ç¶æ§ããããã«æãäžãããªãLLM掻çšãããžãã¹ã®âå¿ é æé€âã«ãªã£ãã®ãã解説ããŸãã
第2ç« . ãå¿ é æé€ããšããŠã®LLM â èæ¯ãšæçŸ©
ð§ ã¯ããã«ïŒãAIã¯âæªæ¥ã®æè¡âã§ã¯ãªãâåææ¡ä»¶âãžã
第1ç« ã§èŠãããã«ãAIã¯ãã¯ããå°å
¥ãããåŠãããšããéžæè¢ã§ã¯ãªãã黿°ã»æ°Žéã»ã€ã³ã¿ãŒããããšåã**â䜿ãããšãåæâã®ç€ŸäŒã€ã³ãã©**ãšãªããŸããã
æ¬ç« ã§ã¯ãã®åæã®äžã«ç«ã¡ããªãä»ãLLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒãããã¹ãŠã®ããžãã¹ããŒãœã³ã«ãšã£ãŠâå¿
é æé€âãšãªã£ãã®ããã3ã€ã®é²åã¹ããããšã¯ãŒã¯ãããŒã®è»¢ææ§é ããè§£ãæãããŸãã
â ãå®éšæè¡ããããæŠç¥åºç€ããž â äžå¯éãª3段éé²å
2022幎ãŸã§ã¯AIå°å ¥ãšããã°äžéšéšçœ²ã®PoCïŒæŠå¿µå®èšŒïŒæ¢ãŸããäž»æµã§ãããããã2023幎以éãçæAIã¯ã詊éšçãªå®éšããããçµå¶ã®åå°ããžãšäžå¯éçãªé²åãéãã€ã€ãããŸããç¹ã«ãäŒæ¥ã»çµç¹ã®çŸå Žã§ã¯æ¬¡ã®3段éã®é²åãã§ãŒãºãæç¢ºã«èŠ³æž¬ãããŠããŸãïŒ
ãã§ãŒãº | å 容 | æå³ãããã® |
---|---|---|
𧪠PoCå°å ¥ | éå®çãªè©Šéšå°å ¥ã»æ€èšŒ | æè¡ã®é©æ§ç¢ºèª |
ð æ¥åå°å ¥ | æ¥åããã»ã¹ãžæ¬æ Œçµ±å | æ¥åã®äžæ žå |
ð§ æŠç¥å°å ¥ | çµç¹ã»äºæ¥å šäœã®åèšèš | çµå¶æŠç¥ã®åæ |
Gartnerã®èª¿æ»ã«ããã°ããPoCæ¢ãŸããã®äŒæ¥ã¯2023幎ã®çŽ68ïŒ
ãã2025幎ã«ã¯30ïŒ
æªæºã«æžå°ãããšèŠèŸŒãŸããŠããŸãã
ãããŠãã®å€åã¯å€§äŒæ¥ã ãã§ã¯ãããŸãããå°èŠæš¡ãªè£œé æ¥ãåäººäºæ¥äž»ã§ããFAQå¿çã»é¡§å®¢å¯Ÿå¿ã»å¶æ¥è³æã®åçš¿äœæãªã©ã1æ¥åã ãã®å°å
¥ãããæç¢ºãªææãäžããäºäŸãæ¥å¢ããŠããŸãã
â èŠç¹ïŒãAIã¯âææã詊ãæè¡âãããâææãåºãããã®åæâãžãšäœçœ®ã¥ããå€ãã£ããã
â¡ ã¯ãŒã¯ãããŒãæ ¹æ¬ããå€ãã â ãAIãäžæ¬¡æ¡ã人éã倿ã
AIãã€ã³ãã©ãšãªã£ãããšã§ãæ¥åã®åæãã®ãã®ãæžãæãããŸããã
éå»20幎ã®ITé²åãæ¯ãè¿ããšããã®å€åã¯æ¬¡ã®ããã«æŽçã§ããŸãïŒ
æä»£ | äž»ãªãã©ãã€ã | 䞻圹 |
---|---|---|
2000幎代 | GUIã»Webæäœäžå¿ | 人éãæäœæ¥ã§æäœ |
2010幎代 | APIã»RPAã«ããèªåå | ã·ã¹ãã ãåŠç |
2020幎代 | LLMã«ããèªç¶èšèªæä»€ | AIãçæã»ææ¡ |
ãã€ãŠã人éããŒãããäœããããšãåœç¶ã ã£ãæ¥åã¯ãä»ããAIãäžæ¬¡æ¡ãæç€ºãã人éãæŠç¥å€æãäžããæ§é ãžãšå€ãããŸããã
ð ã¯ãŒã¯ãããŒã®åæ§æäŸ
åŸæ¥ã®æ¥å | LLMå°å ¥åŸã®æ¥å |
---|---|
å¶æ¥ææ¡æžããŒãããå·ç | AIãåçš¿ãçæ â 人éãæŠç¥èª¿æŽ |
FAQã人ã調æ»ã»åç | AIãäžæ¬¡åç â 人éãã¬ãã¥ãŒ |
ã³ãŒãã¬ãã¥ãŒãæäœæ¥ | AIãäžæ¬¡ãã§ã㯠â 人éãæ¿èªå€æ |
MicrosoftãGitHubã®èª¿æ»ã§ã¯ãããããæ°æ§é ãå°å
¥ããããŒã ã30ã50ïŒ
ã®å·¥æ°åæžãéæããŠããŸãã
ããã«è¿å¹Žã§ã¯ãå€§äŒæ¥ã ãã§ãªãBtoCäºæ¥è
ãå人çµå¶ã®ãªã³ã©ã€ã³ã·ã§ããã§ãããã£ããå¿çãã¡ãŒã«ãã³ãã¬ãŒãçæãAIã«å§ããé¡§å®¢å¯Ÿå¿æéãæ30ã40æéåæžããäºäŸãçŸããŠããŸãã
â æ¬è³ªïŒãAIïŒäžæ¬¡åŠçãã人éïŒæŠç¥å€æããšããâæ°ãã忥ã¢ãã«âã¯ãç¥çåŽåã®æšæºèšèšã«ãªãã
⢠ãæäœã§ãããã§ã¯äžåå â âAIåæã§èšèšããåâãç«¶äºå
AIã®æ®åãé²ãæ¬¡ã®æ®µéã§åãããã®ã¯ããAIã䜿ããããã§ã¯ãããŸããã
åãããã®ã¯ã**ãAIãååšããããšãåæã«ãæ¥åã»çµç¹ã»äºæ¥ãã®ãã®ãã©ãåèšèšãããã**ã§ãã
ð åèšèšã«ãã£ãŠåŸãããææäŸ
- å¶æ¥ïŒé¡§å®¢ããŒã¿ã𿿡履æŽãAIãåæ â åçš¿ãèªåçæ â æ åœè ã¯æŠç¥ç«æ¡ã«å°å¿µ
- ã«ã¹ã¿ããŒãµããŒãïŒå±¥æŽè§£æïŒåæå¿çã®èªååïŒ70ïŒ ä»¥äžèªååïŒ â å€§å¹ ãªã³ã¹ãåæž
- éçºïŒAIã¬ãã¥ãŒã§å·¥æ°30ïŒ åæž â ãªãªãŒã¹ãŸã§ã®ãµã€ã¯ã«ççž®
ð AIå°å ¥ã«ããã3ã€ã®èšèšãã¿ãŒã³
ãã¿ãŒã³ | å 容 | 掻çšäŸ |
---|---|---|
èªååå | æ¢åäœæ¥ãAIãä»£è¡ | FAQã»èŠçŽã»åé¡ãªã© |
è£å©å | æææ±ºå®ãAIãæ¯æŽ | ææ¡æžåçš¿ã»éèŠäºæž¬ãªã© |
å ±åµå | AIãšäººéãååãæ°äŸ¡å€ãåµåº | æ°èŠäŒç»ã»è£œåèšèšãªã© |
ð æ³šæç¹ïŒããŒã«ããæäœã§ãã人ãã¯å¢ããŠããŸããããAIåæã§æ§é ãèšèšã§ãã人ãã¯ãŸã å°æ°ã§ãããã®âèšèšåã®é察称æ§âããããä»åŸ5ã10幎ã®ç«¶äºåãå·Šå³ããŸãã
⣠ãAIæé€ãã¯âå ±éåºç€âãž â å人ããçµç¹ãŸã§
AIã¯ãã¯ãç¹å¥ãªã¹ãã«ã§ã¯ãªãã財åã»æ³åã»ããŒã±ãã£ã³ã°ãšåæ§ã«ãã¹ãŠã®ããžãã¹ããŒãœã³ãæã€ã¹ãåºç€æé€ã§ãããããŠãæé€ããšã¯åãªãç¥èã§ã¯ãªãããæææ±ºå®ã®åæãšãªãæèæ§åŒãã§ãã
ããããã®ç«å Žã§å¿ èŠãšãããæé€ã®å°çšã¯æ¬¡ã®ããã«ç°ãªããŸãïŒ
- å人ïŒAIãæŽ»çšããŠæéãšéäžåãâæŠç¥æ¥åâãžåé åããå
- äžå°äŒæ¥ïŒå°èŠæš¡ãªå°å ¥ãã確å®ãªROIãçã¿åºãèšèšå
- å€§äŒæ¥ïŒå šç€ŸæŠç¥ã»äºæ¥æ§é ãAIåæã§åæ§ç¯ããæ§æ³å
â ä»åŸæ±ãããã3ã€ã®æé€èœå
- ð§ æ¬è³ªçè§£åïŒAIããèãããã®ã§ã¯ãªãã確ççã«äºæž¬ãããã¢ãã«ã§ããããšã®çè§£
- ð ïž èšèšåïŒæ¥åããµãŒãã¹ãâAIåæâã§åæ§æããå
- ð è©äŸ¡åïŒåºåãæ€èšŒã»æ¹åããç¶ç¶çã«ç²ŸåºŠãé«ããå
ð èšãæããã°ããAIã䜿ãã人ãã§ã¯ãªãã**ãAIãšå ±ã«äŸ¡å€æ§é ãèšèšã§ãã人ã**ãããã2025幎以éã®åžå Žã§æã䟡å€ããååšãšãªããŸãã
ð æ¬¡ç« ã§ã¯ãããããâèšèšåâã®åºç€ãšãªããLLMã®å
éšæ§é ãšåäœåçãéãšã³ãžãã¢ã§ãçè§£ã§ãã圢ã§è§£èª¬ããŸãã
ãããçè§£ããããšãããããã³ããèšèšããRAGæ§ç¯ããè©äŸ¡äœå¶èšèšããšãã£ãå®è·µãã§ãŒãºã®è³ªãšæ·±ããæ±ºå®ã¥ããŸãã
第3ç« ïŒLLMã®ä»çµã¿ãå éšçè§£ã
ð§ ã¯ããã«ïŒãâ䜿ãâã ããªãäžèŠãâ䜿ãããªãâãªãå¿ é ã
ChatGPTã®ãããªLLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒã¯ãã質åããã°çããè¿ã£ãŠããéæ³ã®ç®±ãã®ããã«èŠããŸãã
ããããæ¥åã»ã·ã¹ãã ã»æŠç¥ã®äžæ žã«å°å
¥ããæ®µéã§ã¯ããã®âç®±ã®äžèº«âãçè§£ããŠãããã©ãããã**粟床ã»ã³ã¹ãã»ROIïŒæè³å¯Ÿå¹æïŒ**ãå·Šå³ããŸãã
- â ä»çµã¿ãç¥ããã«å°å ¥ â 誀åºåã髿¢ãŸããæ¹åçãç«ãŠãããªã
- â æ§è³ªã誀解ãããŸãŸèšèš â APIã³ã¹ããè¥å€§åãROIãäœäž
- â æ§é ãçè§£ããŠèšèš â 誀åºå30ïŒ åæžã»APIã³ã¹ã20ïŒ åæžã®å®çžŸã
æ¬ç« ã§ã¯ããAIã¯**âèããâã®ã§ã¯ãªããâ確ççã«æ¬¡ãäºæž¬ããè£ çœ®â**ã§ããããšããæ¬è³ªã軞ã«ãååŠè ã«ãè ¹èœã¡ããæ§é çè§£ãšãå®åè ãèšèšå€æã«äœ¿ããç¥èãäœç³»çã«æŽçããŸãã
â Transformer â æèããæ§é ããšããŠèªãâé è³â
ð åŸæ¥ã¢ãã«ã®éç
RNNãLSTMãªã©åæã®èªç¶èšèªåŠçã¢ãã«ã¯ãèªé ã«äŸåãã鿬¡åŠçã§ããã以äžã®å¶çŽããããŸããïŒ
- é·æã«ãªããšé廿 å ±ã倱ãããããïŒåŸé æ¶å€±ïŒ
- åèªéã®é¢ä¿ããé åºãã ãã§å€æãããããæå³æ§é ã®çè§£ãå°é£
â¡ Transformerã®é©æ°ïŒãèªå·±æ³šææ©æ§ïŒSelf-AttentionïŒã
ïŒVaswani et al., 2017 âAttention Is All You NeedâïŒ
Transformerã¯æç« äžã®å šãŠã®åèªå士ã®é¢é£æ§ãæ°å€åããæå šäœãäžæ¬ã§çè§£ã§ããããã«ããŸããã
- ååèªããä»ã®åèªãšã©ã®çšåºŠé¢é£ããŠãããããéã¿ãšããŠèšç®
- æèã俯ç°çã«è§£æããäžè²«æ§ã®ããèªç¶ãªçæãå¯èœã«
ð äŸïŒã圌ã¯éè¡ã«è¡ã£ããããã§ãéãåŒãåºãããã
â ãããã§ãã¯ãéè¡ããšåŒ·ãçµã³ã€ããšã¢ãã«ã倿ããã
ð èšèšãã§ãã¯ãã€ã³ãïŒå®ååãïŒ
- ããã³ããèšèšïŒéèŠãªåèªã¯é¢é£èªã®è¿ãã«é 眮ãã
- ãŠã£ã³ããŠç®¡çïŒcontext windowïŒäŸïŒ4,096ã128,000 tokensïŒå ã§æå³ãéåããªãæ§é ãæèãã
- é·æåŠçæŠç¥ïŒææžåå²ã»æ®µéççæã»èŠçŽâåçæãªã©ãçµã¿åãããwindowå¶çŽãå æ
â¡ ããŒã¯ã³åãšç¢ºçäºæž¬ â ãèãããã®ã§ã¯ãªããæ¬¡ãéžã¶ã
å€ãã®äººã誀解ããŸãããLLMã¯**ãäºå®ãç¥ã£ãŠãããããã§ããæèããŠãããããã§ããããŸãã**ã
å
éšã§è¡ã£ãŠããã®ã¯ãæ¡ä»¶ä»ã確çã®æšå®ã§ãã
ð§ åºåçæã®3ã¹ããã
- ããŒã¯ã³åïŒæãããŒã¯ã³ïŒåèªã»æç¯ãªã©ïŒã«åå²ãæ°å€å
äŸïŒã仿¥ã¯ãã倩æ°ã§ãããâ [仿¥][ã¯][ãã][倩æ°][ã§ã][ã] - 確çååžã®æšå®ïŒçŽåã®ããŒã¯ã³åããæ¬¡ã®åºçŸç¢ºçãèšç®
äŸïŒã仿¥ã¯ãã倩æ°ãâ- ãã§ãããïŒçŽ84ïŒ
ïŒ / ãã ããïŒçŽ12ïŒ
ïŒ / ãã§ããããïŒçŽ3ïŒ
ïŒ
â»æ°å€ã¯äŸ¿å®çãªäŸç€ºã§ãã宿ž¬å€ã§ã¯ãããŸããã
- ãã§ãããïŒçŽ84ïŒ
ïŒ / ãã ããïŒçŽ12ïŒ
ïŒ / ãã§ããããïŒçŽ3ïŒ
ïŒ
- 鿬¡çæïŒAutoregressive GenerationïŒïŒãããç¹°ãè¿ã1ããŒã¯ã³ãã€çæ
ð æ¬è³ªïŒã¢ãã«ã¯ãæ£ããçãããç¥ã£ãŠããã®ã§ã¯ãªãããæãâãããâåèªããéžãã§ããã ãã§ãã
ð å®å广äŸ
- temperatureæé©åïŒäŸïŒ0.2ã0.8ïŒâ 誀åºåç15ïŒ åæž
- 確çã¹ã³ã¢ã«ããã¬ãã¥ãŒèªåå â 人çå·¥æ°30ïŒ åæž
ð èšèšãã§ãã¯ãã€ã³ã
- temperatureèšèšïŒæ¢çŽ¢åºŠïŒåµé æ§ãšäžè²«æ§ã®ãã©ã³ã¹ïŒãå¶åŸ¡
- ä¿¡é ŒåºŠèšèšïŒç¢ºçã¹ã³ã¢ã«åºã¥ããå質åãããèŠã¬ãã¥ãŒå€å®ããèªåå
- ããŒã¯ã³æ°å¶åŸ¡ïŒã³ã¹ãïŒ1k tokensãããã®äŸ¡æ ŒïŒãšç²ŸåºŠã®æé©ç¹ãèšè𿮵éã§èŠç©ãã
⢠åã蟌ã¿ïŒEmbeddingïŒ â æå³ãâ空éâã§æ±ã
ã³ã³ãã¥ãŒã¿ã¯ãæå³ããçŽæ¥çè§£ã§ããŸãããããã§ç»å Žããã®ã**åã蟌ã¿ïŒEmbeddingïŒ**ã§ãã
ïŒMikolov et al., 2013 âWord2VecâïŒ
- åèªã»æã»ææžã倿¬¡å ãã¯ãã«ç©ºéäžã«é 眮
- æå³ãè¿ããã®ã»ã©ç©ºéäžã§âè¿æ¥âãã
ð äŸïŒ
- ããããããã¿ããããããããâ è¿ãäœçœ®ïŒé¡äŒŒïŒ
- ããããããã¯ã©ãŠãããããœã³ã³ãâ é ãäœçœ®ïŒéé¡äŒŒïŒ
ð æ³šæç¹ïŒå°éçšèªã»æåäŸåèªã»å€çŸ©èªã¯èª€å·®ã倧ãããããå矩èªèŸæžã»äºåèªåœç»é²ã»äººéã¬ãã¥ãŒãäžå¯æ¬ ã
ð å®å广äŸ
- åçŸ©èªæ¡åŒµã«ããæ€çŽ¢ç²ŸåºŠåäž â +32ïŒ æ¹å
- é¡äŒŒåºŠïŒcosé¡äŒŒåºŠ0.8以äžïŒãéŸå€ãšããFAQæ€çŽ¢ â å¿ç粟床+27ïŒ
ð èšèšãã§ãã¯ãã€ã³ã
- RAGèšèšïŒEmbedding空éã§ã®æ€çŽ¢æŠç¥ïŒãããå€ã»æ¬¡å æ°ã»æŽæ°é »åºŠïŒãæé©å
- èªåœç®¡çïŒç¥èªã»ãã¡ã€ã³èªåœãæ£èŠåãã誀差æºãäºåé€å»
⣠LLMã®å šäœããã»ã¹ â å ¥åããåºåãŸã§ã®æµã
LLMå éšã§ã¯ä»¥äžã®ãããªãã€ãã©ã€ã³ãåäœããŠããŸãïŒ
- å ¥åè§£æïŒTokenizationïŒïŒæç« ãæ°å€å
- æèè§£æïŒSelf-AttentionïŒïŒåèªéäŸåãè§£æ
- æå³ç©ºéã§ã®æšè«ïŒEmbeddingïŒïŒé¡äŒŒæ§ã»æå³è·é¢ãèšç®
- 確çççæïŒæãèªç¶ãªæ¬¡ããŒã¯ã³ãéžæ
- 鿬¡æ§ç¯ïŒæå šäœãçæ
ð æ¯å©ïŒãæãâãããâäžæãéžã³ç¶ãããã§ã¹AIã
â æªæ¥ãçè§£ããŠããã®ã§ã¯ãªãããéå»ã®æããèªç¶ãªäžæããéžãã§ããã ãã
ð ãããã誀解ãšå®é
誀解 | å®é |
---|---|
AIã¯äºå®ãç¥ã£ãŠãã | åºçŸç¢ºçã®ååžãåŠç¿ããŠããã ã |
AIã¯èããŠãã | æ¡ä»¶ä»ã確çãæšå®ããŠããã ã |
ãã«ã·ããŒã·ã§ã³ã¯ãã° | 確çã¢ãã«ã®æ§è³ªã§ããå®å šæé€ã¯äžå¯èœ |
ã¢ãã«ã倧ãããã°äžèœ | å ¥åèšèšã»è©äŸ¡ææšãæªããã°æ§èœã¯åºãªã |
ð èšèšè ã®æŠç¥å€æ
- ã©ãã§RAGïŒå€éšç¥èïŒãçµã¿èŸŒãã
- ã©ãã§äººéã¬ãã¥ãŒãæãã
- ã©ã®è©äŸ¡ææšïŒPrecision / Recall / Latency / CostïŒãèšå®ããã
ð ãä»çµã¿ãçè§£ããŠããããã§ãROIã30ã50ïŒ å€ããã±ãŒã¹ã¯çãããããŸããã
â ãŸãšãïŒãAIã¯âæèè£ çœ®âã§ã¯ãªãâäºæž¬è£ 眮âã
- â Transformerã¯æèæ§é ãæ°å€åããèªç¶ãªçæãæ¯ãã
- â LLMã¯æ¡ä»¶ä»ã確çã®é£éã«ãã£ãŠâãããâåèªãçæããŠãã
- â åã蟌ã¿ã¯ãæå³ã®è·é¢ãã空éã§è¡šããæ€çŽ¢ã»èŠçŽã»é¡äŒŒæœåºã«å¿çšããã
- â 誀åºåã¯æ¬è³ªçæ§è³ªã§ãããèšèšã»è©äŸ¡ã»ã¬ãã¥ãŒã«ãã£ãŠå¶åŸ¡å¯Ÿè±¡ãšãªã
ð æ§é ãâåŸæäžåŸæâãçã
æ¬ç« ã§èŠãŠããéããLLMã¯**ã確çååžããâãããâåèªãéžã¶è£
眮ãã§ãã
ãã®æ§é ãããããåµé ã»èŠçŽã»ç¿»èš³ãã«ã¯åŒ·ãããè«çæšè«ã»ææ°äºå®ã»å æåæãã«ã¯åŒ±ã**ãšããâåŸæã»äžåŸæâãçã¿åºããŸãã
æ¬¡ç« ã§ã¯ããã®å éšæ§é ãåæã«ãã©ã®é åã§LLMãåãçºæ®ããã©ãã§äººéã»ä»æè¡ãå¿ èŠãšãªããããã¿ã¹ã¯é©æ§ãããããšããŠäœç³»åããŠãããŸãã
â åèæç®
- Vaswani et al., 2017: Attention Is All You Need
- Mikolov et al., 2013: Efficient Estimation of Word Representations in Vector Space
- Brown et al., 2020: Language Models are Few-Shot Learners
第4ç« ïŒåŸæïŒäžåŸæãããã³ã°ã掻çšå€æã
ð§ ã¯ããã«ïŒãâã©ãã«äœ¿ããâã誀ããšãAIãããžã§ã¯ãã¯å€±æããã
AI/LLMå°å
¥ã®æå€§ã®èœãšã穎ã¯ãã¢ãã«ã®ç²ŸåºŠãæ§èœãã®ãã®ã§ã¯ãããŸããã
æå€§ã®å€±æèŠå ã¯ããã©ãã«äœ¿ããããšããæŽ»çšé åã®éžå®ãã¹ã§ãã
McKinsey Global SurveyïŒ2024ïŒã«ããã°ãPoC段éã§ææãåºããªãã£ãAIãããžã§ã¯ãã®**çŽ72ïŒ **ããã¿ã¹ã¯éžå®ã®èª€ããã«èµ·å ããŠããŸããã
åãã¢ãã«ã§ãââ
- â é©åãªé åã«äœ¿ãã°ïŒçç£æ§ã¯æ°åã10åã«åäž
- â äžåããªé åã«äœ¿ãã°ïŒèª€åºåã»ç²ŸåºŠäœäžã»ã³ã¹ãççº
ãããã£ãŠæ¬ç« ã®ç®çã¯ããåŸæã»äžåŸæããæ£ç¢ºã«ææ¡ããã©ã®é åã«ã©ã䜿ããã®èšèšå€æãäžããããã«ãªãããšã§ãã
â åŸæãªããšïŒãéæ§é æ å ±ã®âæŽçã»åæ§æâã
LLMãæãåãçºæ®ããã®ã¯ã人éã«ãšã£ãŠæ±ãã¥ãã**éæ§é æ
å ±ïŒèªç¶èšèªã»ææ§ãªæç€ºã»èšå€§ãªææžãªã©ïŒ**ãæŽçã»åæ§æããé åã§ãã
ããã¯ã確çååžã«åºã¥ããŠãã¿ãŒã³ãåæ§æããããšããã¢ãã«ã®æ¬è³ªãšå®å
šã«äžèŽããŠããŸãã
åé | å 容 | 掻çšäŸ |
---|---|---|
ð èŠçŽã»æ å ±æœåº | é·æããèŠç¹ãæŽç | äŒè°è°äºé²ã»è«æèŠçŽ |
ð¬ èªç¶èšèªã®åæ§æ | ææ§ãªæç€ºã圢åŒå | SQLèªåçæã»èšå®ãã¡ã€ã«æŽåœ¢ |
ð§ æ å ±æŽçã»åé¡ | ç¹åŸŽãæœåºã»æ§é å | 顧客ãã£ãŒãããã¯åæã»ã¿ã°ä»ã |
𧪠æ°èŠæ¡åºãã»ææ¡ | æ¢ç¥ç¥èã®çµã¿åãã | ååäŒç»ã»èšäºæ§æ |
ðª ãã©ãŒããã倿 | æžåŒã»æäœã®å€æ | ã¡ãŒã«âå ±åæžãJSONâèªç¶æ |
ð åµé æ§ã®æ¬è³ª
LLMã®ãåµé ãã¯ãŒãããã®ç¬åµã§ã¯ãªããæ¢åæ
å ±ã®åæ§æã§ããç¹èš±çºæãåºç€ç ç©¶ã®ãããªçŽç²ãªåµé ã§ã¯è£å©çç¥çã¢ã·ã¹ã¿ã³ããšããŠçšããã®ãçŸå®çã§ãã
â¡ äžåŸæãªããšïŒãå³å¯æ§ã»èšæ¶ã»ç¶æ 管çããæ¬è³ªã®é å
äžæ¹ã§ãLLMã¯ãèªç¶ãªæç« ãåºããããšã«æé©åãããŠãããããå³å¯æ§ã»äžè²«æ§ã»èšæ¶ç®¡çãæ¬è³ªãšãªãã¿ã¹ã¯ã¯äžåŸæã§ãã
ãããã®èª€åºåãççŸã¯âãã°âã§ã¯ãªããã¢ãã«ã®ä»æ§äžé¿ããããªãæ§é çéçã§ãã
åé | å 容 | èŠæãªçç± |
---|---|---|
ð¢ æ°å€èšç®ã»è«çæšè« | å³å¯ãªæ°åŒåŠç | 確çã¢ãã«ããå³å¯æ§ãæ ä¿ã§ããªã |
ð äºå®ããŒã¹åç | æ£ç¢ºãªææ°æ å ± | åŠç¿æç¹ã®éçããŒã¿äŸå |
ð ç¶æ 管çã»é·æèšæ¶ | å±¥æŽã»æèãèžãŸãã倿 | èšæ¶ã»ç¶æ æ©èœãååšããªã |
ð§ é·æèšç»ã»æ¡ä»¶åå² | 倿®µéã®æèã»å¶åŸ¡ | äžéæšè«ã»èªå·±ç£èŠãã§ããªã |
ð¡ïž ã»ãã¥ãªãã£ã»æ³å€æ | æç¢ºãªæ£èª€ãå¿ èŠ | ãèªç¶ãªåºåãã誀å€å®ã«çŽçµ |
ð çè§£ãã¹ãæ¬è³ª
LLMã¯ãæãèªç¶ãªçãããåºãããèšèšãããŠããããæãæ£ç¢ºãªçãããåºãèšèšã«ã¯ãªã£ãŠããŸããã
â¢ ãæŠç¥çãããã³ã°ãïŒ4ã€ã®æŽ»çšãŸãŒã³ã§å€æãã
åŸæã»äžåŸæã®çè§£ãèžãŸããã¿ã¹ã¯ã¯æ¬¡ã®4ã€ã®âæŠç¥ãŸãŒã³âã«åé¡ã§ããŸãã
ãŸãŒã³ | æå³ | 掻çšäŸ |
---|---|---|
â åäœå®çµãŸãŒã³ | LLMåç¬ã§ROIãé«ã | æ å ±æŽçã»èŠçŽã»ãã©ããçæ |
ð§ è£å®é£æºãŸãŒã³ | è£å®æè¡ãšçµã¿åãããŠå®çšå¯èœ | èšç®ããã¡ã¯ãåçãç¶æ å¶åŸ¡ |
â ïž æ éé©çšãŸãŒã³ | è£å®ããŠãæçµå€æã¯äººé | å¥çŽã¬ãã¥ãŒãæ³å審æ»ãå«çå€å® |
â éé©çšãŸãŒã³ | çŸç¶ã®æè¡ã§ã¯é©çšãã¹ãã§ãªã | å»ç蚺æã®èªå倿ãé«ç²ŸåºŠæ°å€æŒç® |
ð ãããæ žå¿ïŒãâïŒäœ¿ããªããã§ã¯ãªãããâïŒåäœã§ã¯äœ¿ããªãã
äžåŸæé åã¯æé€ã§ã¯ãªããã忥ãšè£å®ãã«ãã£ãŠäŸ¡å€ãçã¿åºããŸãŒã³ã§ãã
ãã ããæ
éé©çšããéé©çšãé åã«èžã¿èŸŒãå Žåã¯ã責任䞻äœã»æ³çãªã¹ã¯ã»å®å
šåºæºãšãã£ãéæè¡çèŠçŽ ãèžãŸãã倿ãäžå¯æ¬ ã§ãã
⣠ãè£å®ããŠããã¡ãªé åããååšããçç±
éèŠãªã®ã¯ããè£å®ããã°äžèœããšãã誀解ãé¿ããããšã§ãã
LLMã¯**âæ£è§£ã«å¯Ÿãã責任âãšããæŠå¿µãæããªã**ããã倿ã®åž°è²¬ã人éã«ããé åã¯åççã«å§ããããšãã§ããŸããã
äŸïŒ
- â å¥çŽã¬ãã¥ãŒïŒRAGïŒAgentè£å®ã§80ïŒ â95ïŒ ã®ç²ŸåºŠåäžã¯å¯èœã ããæçµå€æã¯åŒè·å£«ã»æ³åæ åœãæ ãã¹ãã
- â å»ç蚺æã®èªå決å®ïŒè£å®ããŠãã誀蚺ïŒäººåœãªã¹ã¯ãã«ã€ãªããé åã¯ãçŸè¡æè¡ã®é©çšå¯Ÿè±¡å€ã
ãã®ãæè¡çéç à 責任䞻äœã®äžåšããšããæ§é ãçè§£ããããšããAI掻çšã®âå®å šèšèšâã«äžå¯æ¬ ã§ãã
â€ æ¬¡ç« ãžã®æ©æž¡ãïŒãè£å®é£æºããâã¢ãŒããã¯ãã£âãšããŠèšèšãã
æ¬ç« ã§æŽçããã®ã¯ããããŸã§ãåŸæïŒäžåŸæãã®å°å³ãšããã©ã®é åã«ã©ã®ãããªå§¿å¢ã§èšãã¹ããããšããèšèšå€æã®æéã§ãã
æ¬¡ç« ã§ã¯ããã®ãè£å®é£æºãŸãŒã³ããå®éã®ãããã¯ãã»ã·ã¹ãã èšèšã«èœãšã蟌ãããã®4ã€ã®å®è·µã¢ãŒããã¯ãã£
ââRAG / Agent / Function Calling / Fine-tuning ââã詳ãã解説ããŸãã
ããããAIã¯ãã䟿å©ãªããŒã«ããããæ¥åãšäºæ¥ãæ¯ããã€ã³ãã©ããžãšé²åããŸãã
第5ç« ïŒ4ã€ã®ã¢ãŒããã¯ãã£ãèšèšè«ã
ð§ ã¯ããã«ïŒãããã³ãããã ãã§ã¯âæ¥åå€é©âã¯èµ·ããªã
ChatGPTã®ãããªLLMïŒå€§èŠæš¡èšèªã¢ãã«ïŒã¯ãããèªäœãåªããèªç¶èšèªçæè£ 眮ã§ããããããã質åã«çããã ããã§ã¯ROIã¯éå®çã§ãããçç£æ§ã10åã«é«ããããäºæ¥æ§é ãåèšèšããããšã¯ã§ããŸããã
æ¬è³ªçãªå€é©ã¯ãAIãå€éšããŒã¿ã»ç€Ÿå ã·ã¹ãã ã»æ¥åããã»ã¹ãšçµåããâã¢ãŒããã¯ãã£âãšããŠèšèšãããšãã«åããŠèµ·ãããŸãã
æ¬ç« ã§ã¯ãçŸåšã®AI掻çšã®äžæ žãæ ã4ã€ã®ä»£è¡šçã¢ãŒããã¯ãã£ãæŽçããã圹å²ã»å°å ¥æéã»é£æºé åºã»ROIã»é²åååããŸã§ã**âæŠç¥çãªèšèšè«â**ãšããŠäœç³»åããŸãã
ð§ â RAG â å€éšç¥èãšâæ¥ç¶âããïŒKnowledge LayerïŒ
ð æŠèŠ
RAGïŒRetrieval-Augmented GenerationïŒã¯ãã¢ãã«å éšã ãã§ç¥èãå®çµããããå€éšã®æ å ±æºïŒç€Ÿå ææžã»è£œåDBã»ãã¬ããžããŒã¹ãªã©ïŒãæ€çŽ¢ã»ååŸããŠåçã«åæ ãããææ³ã§ããããã«ããããæ¥åçŸå Žã§äœ¿ãã粟床ãã確ä¿ã§ããŸãã
âïž åºæ¬æ§é
- ãŠãŒã¶ãŒè³ªåããã¯ãã«å
- ãã¯ã¿ãŒDBã§æå³æ€çŽ¢
- é¢é£ææžãååŸããŠåºåãžåæ
ðª 匷ã¿ãšéç
匷㿠| éç |
---|---|
ååŠç¿ãªãã§ææ°ã»ç€Ÿå åºæã®æ å ±ãæŽ»çšå¯èœ | ææžååŠçã»æŽæ°ç®¡çã粟床ãå·Šå³ |
å°å ¥ã³ã¹ããäœãPoC段éã«æé© | åç¬ã§ã¯æšè«ã»å€æãã§ããªã |
ð åŸæé åïŒ ç€Ÿå FAQããã¬ããžæ€çŽ¢ã補å仿§ã®å³æåç §
ð¡ ææ°ååïŒïŒäžèšè§£èª¬ïŒ
- Self-RAGïŒæ€çŽ¢æ¹éãã¢ãã«èªãç«æ¡ â æ€çŽ¢ç²ŸåºŠãšæè»æ§ãåäž
- Hybrid RetrievalïŒæ§é åDBã»ã°ã©ãDBäœµçš â è€éãªæ å ±ãžã®å¯Ÿå¿å匷å
- Memory-Augmented RAGïŒå±¥æŽã»é廿èãæŽ»çš â ç¶ç¶å¯Ÿè©±ãåæã«åŒ·ããªã
ð€ â¡ Agent â æèã»å€æãâèªååâããïŒReasoning LayerïŒ
ð æŠèŠ
Agentã¯ãåçºã®å ¥åºåã§ã¯ãªãã¿ã¹ã¯åè§£ã»æšè«ã»å詊è¡ãè¡ããªãããŽãŒã«ãžå°éããŸãã人éã®æèããã»ã¹ãæš¡å£ã»ä»£æ¿ããããšã§ãè€éãªã¯ãŒã¯ãããŒãèªåŸçã«éè¡ããŸãã
ð§ äž»ãªæ©èœ
- ã¿ã¹ã¯åè§£ïŒTask DecompositionïŒ
- äžéæšè«ä¿æïŒChain-of-ThoughtïŒ
- æ¡ä»¶åå²ã»å詊è¡ïŒBranching & RetryïŒ
- å€éšAPIåŒã³åºã
ðª 匷ã¿ãšéç
匷㿠| éç |
---|---|
倿®µéæ¥åã®èªååãå¯èœ | ç¶æ 管çãå¶åŸ¡ããžãã¯ãè€é |
æææ±ºå®ã®é床ãšäžè²«æ§åäž | RAGãFunctionãšã®çµ±åãåæ |
ð åŸæé åïŒ èªåãªãµãŒããããŒã¿åæãè€åã¯ãŒã¯ãããŒå¶åŸ¡
ð¡ ææ°ååïŒïŒäžèšè§£èª¬ïŒ
- State Graph AgentïŒç¶æ é·ç§»ãæç€ºç®¡ç â ãããŒå¶åŸ¡ã容æ
- Planner / Executor åé¢ïŒèšç»ãšå®è¡ã®åœ¹å²åæ â æ¡åŒµæ§ãšåå©çšæ§ãåäž
- Reflection LoopïŒèªå·±è©äŸ¡ã»å詊è¡ãå®è£ â 粟床ãšä¿¡é Œæ§ãåäž
ð§ ⢠Function Calling â AIã«âæãšè¶³âãäžããïŒAction LayerïŒ
ð æŠèŠ
Function Callingã¯ãAIãçè§£ããæå³ãå ·äœçãªAPIåŒã³åºããå€éšæäœãžå€æããæè¡ã§ããããã«ãããèããAIãããåãAIãã«é²åãããŸãã
âïž åºæ¬ãããŒ
- èªç¶èšèªæç€ºãè§£æ
- 察å¿é¢æ°ãéžæã»å®è¡
- å®è¡çµæãå¿çãšããŠè¿ã
ðª 匷ã¿ãšéç
匷㿠| éç |
---|---|
DBæäœã»èªååŠçãªã©âè¡åâé åãå®çŸ | åå®çŸ©ã»I/Oèšèšã®ç²Ÿå¯ããå¿ èŠ |
Agentãšã®é£æºã§âæèâè¡åâèªåŸå | åç¬ã§ã¯æŠç¥å€æãã§ããªã |
ð åŸæé åïŒ CRMã»ERPèªåæŽæ°ãSaaS飿ºã垳祚çæ
ð¡ ææ°ååïŒïŒäžèšè§£èª¬ïŒ
- JSON Schema / OpenFunctionïŒAPI飿ºã®æšæºå â éçºã³ã¹ãäœæž
- ToolformerïŒAIãããŒã«å©çšæŠç¥ãèªåŠç¿ â èªåŸæ§ãåäž
- Dynamic Tool RoutingïŒæé©ãªé¢æ°éžæãèªåå â ãã«ãæ©èœç°å¢ã§ã®ç²ŸåºŠåäž
𧬠⣠Fine-tuning â ã¢ãã«ãâèªç€Ÿå°çšè³âã«ããïŒCore LayerïŒ
ð æŠèŠ
Fine-tuningã¯ãLLMã«èªç€Ÿåºæã®ç¥èã»è¡šçŸã»æäœãåŠç¿ãããåºåå質ãæé©åããææ³ã§ããããã¯å€éšæ¥ç¶ã§ã¯ãªããã¢ãã«å éšã®æ§é ãã®ãã®ãæ¹å€ããŸãã
â ïž æ³šæïŒ Fine-tuningã¯ãç¥èæŽæ°ãã§ã¯ãªããããRAGãªã©ãšã®äœµçšãå¿ é ã§ãã
ðª 匷ã¿ãšéç
匷㿠| éç |
---|---|
åºå圢åŒã»æäœã»è¡šçŸãèªç€Ÿä»æ§ã«çµ±äž | ããŒã¿å質ãäœããšé广 |
ç¹å®ãã¡ã€ã³ã§ã®ç²ŸåºŠãšäžè²«æ§ãåäž | ç¶ç¶çãªååŠç¿ã»ç®¡çãå¿ èŠ |
ð åŸæé åïŒ å°éçšèªBotãæ¥çç¹åQ&Aããã©ã³ãæäœçæ
ð¡ ææ°ååïŒïŒäžèšè§£èª¬ïŒ
- LoRA / QLoRAïŒè»œéã»äœã³ã¹ãåŸ®èª¿æŽ â å°å ¥ããŒãã«ãäœäž
- Adapter TuningïŒåå©çšæ§ã®é«ãæŽæ° â ç¶ç¶éçºã容æ
- Instruction TuningïŒæç€ºè¿œåŸæ§ã®åŒ·å â å®å粟床ãåäž
ð ã¢ãŒããã¯ãã£æ¯èŒè¡šïŒROIã»æ¡ä»¶ã»ããã«ããã¯ïŒ
å±€ | äž»ãªçšé | å°å ¥ã³ã¹ã | ROI | é©çšæ¡ä»¶ | äž»ãªããã«ãã㯠|
---|---|---|---|---|---|
ð§ RAG | ãã¬ããžé£æºã»æ€çŽ¢ | â â | â â â | æ å ±æŽæ°é »åºŠãé«ã | æšè«èœåãéå®ç |
ð€ Agent | 調æ»ã»åæã»æææ±ºå® | â â â | â â â â | ã¯ãŒã¯ãããŒãè€é | ç¶æ 管çãè€é |
ð§ Function | å€éšAPIã»èªåæäœ | â â | â â â â | APIãæŽåæž | 倿äžå¯ |
𧬠Fine-tuning | 粟床ã»ãã©ã³ãé©å | â â â â | â â â â â | äžè²«æ§ã»ç²ŸåºŠãéèŠ | é«ã³ã¹ãã»ååŠç¿ |
ðª å°å ¥ããŒããããïŒæ®µéçãªãèšèšãšç©ã¿äžãã
ãã§ãŒãº | æ§æ | çã | ROIæ²ç· |
---|---|---|---|
ðª åæå°å ¥ | RAG + Function | æå°æ§æã§å³å¹æ§ | ææãåºãããã»äœã³ã¹ã |
âïž æçéçš | + Agent | æèã»å€æãèªåå | 粟床ãšçç£æ§ãé£èº |
ð§ é«åºŠæŽ»çš | + Fine-tuning | 粟床ã»äžè²«æ§ã»ãã©ã³ãæé©å | ç«¶äºåªäœæ§ã®ç¢ºç« |
ð çµ±åæŠç¥ | å šå±€çµ±å | ãç¥èâæèâè¡åâæ§é ãã®èªåŸã·ã¹ãã | é·æROIæå€§å |
â æ¬ç« ãŸãšãïŒãAIå°å ¥ããšã¯âèšèšâã®åé¡ã§ãã
LLMåäœã¯âæç« çæåšâã«éããŸããã
ããããRAGã»Agentã»Functionã»Fine-tuningãšãã4å±€ã®ã¢ãŒããã¯ãã£ãšããŠèšèšã»é£æºããããšã§ãããã¯ãç¥èããæèããè¡åããæ§é ããæ
ãæ¥åã€ã³ãã©ãžãšé²åããŸãã
ãããŠæåããäŒæ¥ã¯ããäžæ°ã«ãã¹ãŠããç®æãã®ã§ã¯ãªãã**ãå°ããå§ãã倧ããçµã¿äžããã**æŠç¥ã§ç«¶äºåªäœãç¯ããŠããŸãã
æ¬¡ç« ããã¯ããããã®ã¢ãŒããã¯ãã£ã**å®éã®å°å ¥ããã»ã¹ïŒ7ã¹ãããïŒ**ãžãšèœãšã蟌ã¿ããæ§æ³ãããææãçãä»çµã¿ãã«å€ããå ·äœææ³ã解説ããŸãã
第6ç« ïŒå°å ¥ããã»ã¹7ã¹ããããå®åèšèšã
ð§ ã¯ããã«ïŒãAIå°å ¥ïŒããŒã«å°å ¥ãã§ã¯ãªã â ææã決ããã®ã¯âåèšèšâã§ãã
ãAIãå°å
¥ããã®ã«ææãåºãªãããPoCã§ã¯åããã®ã«æ¬çªã§æ¢ãŸã£ããââ
ãããã倱æã®**8å²ä»¥äžã¯âæè¡ã®éçâã§ã¯ãªããâããã»ã¹èšèšã®æ¬ åŠâ**ã«ãã£ãŠèµ·ãããŸãã
ãªããªããæ¢åã®æ¥åãããŒã¯ã人éäžå¿ãã«èšèšãããŠãããããAIãæ¬æ ŒæŽ»çšããã«ã¯ãæ¥åæ§é ãã®ãã®ããAIåæã§åèšèšããå¿
èŠãããããã§ãã
ãããã£ãŠãAIå°å
¥ãšã¯åãªããæ°ããããŒã«ã®è¿œå ãã§ã¯ãªãã**âããžãã¹äŸ¡å€ãåµåºããããã®æ¥ååæ§ç¯ãããžã§ã¯ãâ**ã«ã»ããªããŸããã
æ¬ç« ã§ã¯ãäžçäžã®æåäŒæ¥ãå
±éããŠæ¡çšããŠããâé»éã®å°å
¥ããã»ã¹âããç®çã»æé ã»åºåç©ã»è©äŸ¡ææšã»å€ææ¡ä»¶ãŸã§å«ããŠ7ã¹ãããã§è§£èª¬ããŸãã
â»æ¬ç« ã¯ãæ£æ»æ³ïŒHow to æåããããïŒãã«ç¹åããŠããŸããæ¬¡ç« ïŒç¬¬7ç« ïŒã§ã¯ãããã§ãèµ·ããåŸãå
žåçãªå€±æãã¿ãŒã³ãšåé¿çã詳ãã解説ããŸãã
â Step 1. ç®çå®çŸ©ãšæ¥ååæ â ãAIãäœã解決ããã®ãããæç¢ºã«ãã
ð¯ ç®çïŒãæè¡å°å ¥ãã§ã¯ãªããããžãã¹äŸ¡å€ã®åµåºããåºçºç¹ã«çœ®ãã
ð ããã¹ãããš
- çµå¶ç®æšã»äºæ¥KPIãšã®æ¥ç¶ïŒäŸïŒé¡§å®¢å¯Ÿå¿æé30ïŒ åæžãNPS+15ptïŒ
- çŸè¡æ¥åã®å¯èŠåãšããã«ããã¯åæ
- ææã枬ãå®éææšã®èšèšïŒæéã»ã³ã¹ãã»è§£æ±ºçãªã©ïŒ
ð åºåç©ïŒèª²é¡å®çŸ©æžãKPIèšèšæžãæ¥åããã»ã¹ããã
ð NGïŒããšããããAIã詊ãã
ð OKïŒãåãåããåæå¯Ÿå¿ãèªååãã幎éå·¥æ°ã30ïŒ
åæžããã
ð åæ ŒåºæºïŒç®çãçµå¶KPIãšæç¢ºã«çŽã¥ããŠããããšïŒäŸïŒROI ⥠20ïŒ ïŒ
â Step 2. ãŠãŒã¹ã±ãŒã¹åªå åºŠæ±ºå® â ã广 à å®çŸå¯èœæ§ãã§åã¡çãéžã¶
ð¯ ç®çïŒæ©æææãåºããŠç€Ÿå åæã»æè³å€æãåŸãã
ð è©äŸ¡è»žãšææšäŸ
軞 | å 容 | ææšäŸ |
---|---|---|
ð° å¹æèŠæš¡ | ææã®å€§ãã | åæžå·¥æ°ã»å£²äžå¹æ |
âïž å®è£ å®¹ææ§ | å°å ¥ã®ãããã | éçºå·¥æ°ã»PoCæé |
ð è©äŸ¡å¯èœæ§ | æææž¬å®ã®å®¹æã | KPIã®æç¢ºã |
ð§âðŒ çŸå Žé©åæ§ | ãªãã¬ãŒã·ã§ã³é©å床 | æ¹ä¿®éã»æè²ã³ã¹ã |
ð åºåç©ïŒãŠãŒã¹ã±ãŒã¹ãããªã¯ã¹ãROIåæè¡š
ð TipïŒãååæé †6ã¶æããåæžå¹æ ⥠20ïŒ ããªã©éŸå€ãæèšããã
ð åæ ŒåºæºïŒãROI ⥠20ïŒ ããè©äŸ¡å¯èœæ§ã¹ã³ã¢ ⥠4/5ã
â Step 3. ããŒã¿æºåãšRAGèšèš â ãç¥èã®è³ªããç²ŸåºŠãæ±ºãã
ð¯ ç®çïŒãæ£ããç¥èããæŽçãããæèããã¢ãã«ã«äŸçµŠããã
ð ããã¹ãããš
- ç€Ÿå ææžã»FAQã»ãã¬ããžã®åéã»æ£èŠåã»ã¿ã°ä»ã
- é€å€ã»æš©éã»ã¡ã¿ããŒã¿ç®¡çã®ã«ãŒã«èšèš
- ãã¯ã¿ãŒDBåã蟌ã¿ãšæ€çŽ¢ç²ŸåºŠæ€èšŒïŒååã蟌ã¿åšæã®SLAèšå®ïŒ
ð åºåç©ïŒããŒã¿ã«ã¿ãã°ãRAGèšèšæžãæ€çŽ¢ç²ŸåºŠã¬ããŒã
ð 倱æäŸïŒãåéã ãã§çµãã£ãããŒã¿æŽåã
ð 察çïŒãåéâæ£èŠåâæ€èšŒâ管çããäžé£ã®å·¥çšãšããŠå®çŸ©ããã
ð åæ ŒåºæºïŒãæ€çŽ¢ç²ŸåºŠ ⥠90ïŒ ããã¡ã¿ããŒã¿æŽåç ⥠95ïŒ ã
â ïž ããã§æºãããªãå Žåã以éã®å šã¹ãããã§ç²ŸåºŠãäœäžããŸãã
â Step 4. ã¢ãã«éžå®ãšå¶çŽæŽç â ãæåŒ·ãã§ã¯ãªããæé©ããéžã¶
ð¯ ç®çïŒäºæ¥èŠä»¶ã»æ³ä»€ã»éçšå¶çŽã«åèŽããâæ¬çªå¯Ÿå¿ã¢ãã«âãéžå®ã
ð è©äŸ¡è»žãšææšäŸ
軞 | å 容 | ææšäŸ |
---|---|---|
ð¡ 粟床 | åºåå質ã»äžè²«æ§ | èªç€Ÿè©äŸ¡ã»ããã®æ£çç |
â±ïž ã¬ã€ãã³ã· | å¿çé床 | å¹³åå¿çæéã»P95 |
ðž ã³ã¹ã | éçšè²»çš | ããŒã¯ã³åäŸ¡ã»æé¡è©Šç® |
ð ã»ãã¥ãªã㣠| ããŒã¿åŠçæ¹é | SaaS/ãªã³ãã¬ã»PIIåŠç |
ð å¶çŽæ¡ä»¶ | æ³ä»€ã»ç€Ÿå èŠå® | å人æ å ±ä¿è·ã»SLAé©å |
ð åºåç©ïŒã¢ãã«æ¯èŒè¡šãé©åæ§ãããªã¯ã¹ãã³ã¹ãè©Šç®æž
ð åæ ŒåºæºïŒãæ£çç ⥠85ïŒ ããP95å¿çæé †3ç§ããæé¡ã³ã¹ã †äºç®ã
â Step 5. ããã³ããèšèšãšè©äŸ¡èšèš â ãåºå仿§æžããšãåæ Œåºæºããèšèšãã
ð¯ ç®çïŒãåçŸæ§ã®ããåºåããšã枬å®å¯èœãªè©äŸ¡ææšããèšèšããã
ð èšèšãã€ã³ã
- ããã³ãããã圹å²ã»ç®çã»å¶çŽã»åºå圢åŒãã«åè§£
- è©äŸ¡èгç¹ïŒæ£ç¢ºæ§ã»ç¶²çŸ æ§ã»äžè²«æ§ã»å®å šæ§ïŒãå®çŸ©
- èªåè©äŸ¡ã¹ã¯ãªããã»ã«ãŒããªãã¯ã»ã¬ãã¥ãŒåºæºãçå®
ð åºåç©ïŒããã³ãã仿§æžãè©äŸ¡ææšå®çŸ©æžãçŠå察å¿ãã§ãã¯è¡š
ð åæ ŒåºæºïŒãèªåè©äŸ¡æ£ç¢ºæ§ ⥠90ïŒ ããå®å šæ§ã¹ã³ã¢ ⥠95ïŒ ã
ð è©äŸ¡ã¯äžå±€ã§è¡ã
â ãªãã©ã€ã³è©äŸ¡ïŒèªåãã¹ãïŒ
â¡ ãªã³ã©ã€ã³è©äŸ¡ïŒæ¡çšçã»ã¯ãªãã¯çïŒ
⢠ã¬ããããŒã è©äŸ¡ïŒå®å
šæ§ã»ããã³ããã€ã³ãžã§ã¯ã·ã§ã³èæ§ïŒ
â ïž ãããçããšãPoC以éã§âåºåã®åçŸæ§âã確ä¿ã§ããŸããã
â Step 6. PoCãšæ¹å â ãåäœæ€èšŒãã§ã¯ãªãããºã¬æ€åºã
ð¯ ç®çïŒãæåŸ å€ãšã®å·®åããæ©æã«ææ¡ãæ¹åããã
ð ããã¹ãããš
- 10ã50ä»¶ã®å®ããŒã¿ã§ç²ŸåºŠã»åçŸæ§ã»å¿çæéã»ã³ã¹ããæž¬å®
- æ³å®å€ã®åºåã»çŠåéåã»æ³åãªã¹ã¯ã®æ€åº
- ããã³ããã»RAGã»ã¢ãã«ã®æ¹åã«ãŒããåã
ð åºåç©ïŒPoCæ€èšŒã¬ããŒããæ¹åèšç»æžãåèšèšã¡ã¢
ð åæ ŒåºæºïŒGo/No-Goæ¡ä»¶ïŒïŒ
- æ£çç ⥠85ïŒ
- çŠåéå = 0
- å¹³åå¿çæé †3ç§
- æéã³ã¹ã †äºç®æ å
â ïž è©äŸ¡ææšãææ§ãªPoCã¯ãçµå¶å€æãåºããå¿ ãé æ«ããŸãã
â Step 7. éçšã»æ¹åã»å¹ææž¬å® â ãå°å ¥ããŠãããæ¬çªã
ð¯ ç®çïŒãéçš â åæ â æ¹åãã®åŸªç°ãçµç¹ã«æ ¹ä»ãããã
ð æ¹åã¢ã¯ã·ã§ã³
- 宿çãªååã蟌ã¿ã»ååŠç¿ã»ãã¬ããžæŽæ°
- ãŠãŒã¶ãŒãã°åæïŒæ¡çšçã»æºè¶³åºŠã»ã¯ãªãã¯çïŒ
- A/Bãã¹ããšKPIã¢ãã¿ãªã³ã°ã«ããèªåæé©å
ð KPIäŸ
æ¥åé å | KPIäŸ |
---|---|
CSèªåå¿ç | å¹³åå¯Ÿå¿æéãäžæ¬¡è§£æ±ºçãNPS |
å¶æ¥æ¯æŽ | ææ¡äœææéãåæ³šçãæ¡ä»¶æ° |
æ å ±æŽç | äœæ¥æéççž®çãã¬ãã¥ãŒåæ° |
ð åºåç©ïŒæ¹åã¬ããŒããKPIããã·ã¥ããŒãã倿Žç®¡çãã°
ð åæ ŒåºæºïŒãKPIæ¹åç ⥠15ïŒ ããæ¹åãµã€ã¯ã«åšæ †3ã¶æã
ð æåäŒæ¥ã¯AIãâå°å ¥ããŠçµããâã«ãããç¥è埪ç°ã®äžéšãšããŠéçšããŠããã
â æçµãã§ãã¯ãªã¹ãïŒ5ã€ã®YESïŒ
- ããžãã¹èª²é¡ã¯æç¢ºã
- ææãæž¬ãææšã¯å®çŸ©ãããŠããã
- ããŒã¿ãšRAGèšèšã¯æŽã£ãŠããã
- ããã³ãã仿§æžãšè©äŸ¡åºæºã¯ããã
- æ¹åãµã€ã¯ã«ãåãäœå¶ãããã
ð 1ã€ã§ãNOãããå Žåãæ¬çªå°å ¥ã¯èŠéãã¹ãã§ãããåäœããšãææãã¯å¥ç©ã§ãã
ð§ æ¬ç« ãŸãšãïŒãAIå°å ¥ïŒæ¥ååèšèšãããžã§ã¯ãã
- ææã決ããã®ã¯ãæè¡ãã§ã¯ãªããããã»ã¹èšèšãã§ãã
- æåäŒæ¥ã¯ãèª²é¡ â ããŒã¿ â ã¢ãã« â è©äŸ¡ â æ¹åããéç®ã§èšèšããŠãã
- PoCã¯âååŠå€å®âã§ã¯ãªãâæ¹åã®ééç¹âã§ãã
- çã®åè² ã¯å°å ¥åŸââæ¹åã«ãŒããæ¢ããªãããšãROIæå€§åã®éµã§ãã
ð æ¬¡ç« ã§ã¯ããã®âæ£æ»æ³âãèžãã§ããªãèµ·ããåŸã**ã倱æãã¿ãŒã³ãšãã®åé¿çã**ã培åºè§£èª¬ããŸãã
â»æ³åäžã®è£è¶³
æ¬çš¿ã§ç޹ä»ããäºäŸã»æ°å€ã¯ãã¹ãŠå®åšäŒæ¥ã»å£äœã»å人ãç¹å®ãããã®ã§ã¯ãªããè€æ°ã®çŸå Žå ±åãåºã«æœè±¡åããã¢ãã«ã±ãŒã¹ã§ããç¹å®ã®äž»äœãæ¹å€ã»è©äŸ¡ããæå³ã¯ãããŸããã
第7ç« ïŒå°å ¥å€±æãšå¯Ÿçããªã¹ã¯éç®ã
ð§ ã¯ããã«ïŒãAIå°å ¥ã®å€±æã¯âæè¡âã§ã¯ãªãâèšèšâã«ããã
ãAIãå°å
¥ããã®ã«ææãåºãªããââãã®ããããåé¡ã®æ¬è³ªã¯ãã¢ãã«ã®ç²ŸåºŠãã¢ã«ãŽãªãºã ã§ã¯ãããŸããã
æ ¹æ¬åå ã¯ããç®çãææ§ããéçšèšèšãååšããªãããè©äŸ¡ææšãå®çŸ©ãããŠããªãããšãã£ã**âæ§é èšèšã®æ¬ é¥â**ã«ãããŸãã
McKinseyïŒ2024ïŒã«ããã°ãPoCïŒæŠå¿µå®èšŒïŒåŸã«æ¬çªéçšãžå°éããªãã£ãAIãããžã§ã¯ãã®**72ïŒ **ãããæ¥åèŠä»¶æªå®çŸ©ã»éçšèšèšäžåãã«èµ·å ããŠããŸããã
æåããäŒæ¥ãšå€±æããäŒæ¥ã®å·®ã¯ãæè¡åã§ã¯ãããŸãããéãã¯ãã äžã€ïŒ
ð ããããã倱æãã¿ãŒã³ãäºåã«ææ¡ããèšè𿮵éã§æœ°ããŠãããã
æ¬ç« ã§ã¯ãå°å ¥çŸå Žã§é »åºãã8ã€ã®å€±æãã¿ãŒã³ããçç¶ â åå â 察ç â ææš â æååºæºãšããå ææ§é ã§æŽçãã**âåçŸæ§ã®ããæåèšèšâ**ã®åçã解説ããŸãã
1. 倱æã¯âåç¬âã§ã¯ãªãâé£éâãã
AIå°å ¥ã®å€±æã¯ãäžã€ã®ãã¹ããé£éçã«æ³¢åããŸãïŒ
ç®çäžæ â PoCè¿·èµ° â 粟床äžè¯ â åºåäžå®å® â çŸå Žäžæ¡çš
ããããããâããããããããããããâ
ããããæ¹å忢ãããããããã³ã¹ãççº
ã€ãŸãããæåã®èšèšäžåããåææ®µéã§æœ°ãã°ãåŸå·¥çšã®åŽ©å£ã®å€§åã¯é²ããŸãã
以äžã®8ãã¿ãŒã³ã¯ãâé£éã®èµ·ç¹âãæã€ããã®å®è·µçãã§ãã¯ãªã¹ãã§ãã
ðš ãããã8ã€ã®å€±æãã¿ãŒã³ãšå¯Ÿç
â â ç®çãææ§ãªãŸãŸã¹ã¿ãŒãããŠè¿·èµ°ãã
çç¶ïŒããšããããChatGPTãå
¥ãããææãåºãªãã
åå ïŒããžãã¹KPIãæ¥åãŽãŒã«ãæªå®çŸ©ãæææž¬å®ã®ææšãååšããªãã
â 察ç
- ãAIã解決ãã¹ã課é¡ããæ°å€ã»æéä»ãã§ææå
ãäŸïŒãåãåããåæå¯Ÿå¿å·¥æ°ã30ïŒ åæžïŒ3ãæä»¥å ïŒã - ææææšïŒKPIïŒãåææ®µéã§èšå®
ãäŸïŒãåç粟床90ïŒ ä»¥äžããå¯Ÿå¿æé50ïŒ åæžã
ð ææš
- å è¡ææšïŒåæžèŠèŸŒã¿å·¥æ°ãå°å ¥ååŸã®åŠçæé
- åŸè¡ææšïŒå¿çæ¡çšçãCSæºè¶³åºŠãROI
ð æååºæº
- å°å ¥åŸ3ãæä»¥å ã«ãCSæºè¶³åºŠ +15ptããå¯Ÿå¿æé 50ïŒ åæžããªã©å ·äœçKPIãéæã§ããèšèšããã
â â¡ PoCæ¢ãŸãã§æ¬çªç§»è¡ã§ããªã
çç¶ïŒPoCã§ã¯åããæ¬çªå°å
¥ã«è³ããããã¢æ¢ãŸãã
åå ïŒæ¬çªèŠä»¶ã»éçšæ¡ä»¶ãPoCèšèšã«å«ãŸããŠããªã
â 察ç
- PoCéå§æç¹ã§ãæ¬çªå°å ¥æ¡ä»¶ããKPIéææ¡ä»¶ããææå
- éçšã»æš©éã»æŽæ°ã»ç£èŠãŸã§éç®èšèš
ð ææš
- å è¡ææšïŒPoCãšæ¬çªèŠä»¶ã®æŽåç
- åŸè¡ææšïŒæ¬çªç§»è¡çãå°å ¥ãŸã§ã®æé
ð æååºæº
- PoCçµäºãã90æ¥ä»¥å ã«æ¬çªçšŒåãžç§»è¡
â ⢠ããŒã¿åè³ªãæªãã粟床ãåºãªã
çç¶ïŒåçãææ§ã»æèããºã¬ãã»FAQãšäžèŽããªã
åå ïŒååŠçã»ã¿ã°ä»ãã»æ£èŠåã®æ¬ åŠãç²åºŠäžæŽå
â 察ç
- åã蟌ã¿åã«æ£èŠåã»éè€æé€ã»ã¡ã¿ããŒã¿ä»äž
- ç²åºŠãšã¯ãšãªã®æŽåæ§æ€èšŒ
ð ææš
- å è¡ææšïŒæ£èŠåçãã¡ã¿ããŒã¿æŽåç
- åŸè¡ææšïŒPrecision / RecallãRAGåçäžèŽç
ð æååºæº
- Precision 90ïŒ ä»¥äžã»Recall 85ïŒ ä»¥äžãå®å®çã«éæ
â ⣠ããã³ãããææ§ã§åºåãå®å®ããªã
çç¶ïŒåºå圢åŒãæ¯åç°ãªãã»ãã€ãºãå€ã
åå ïŒå¶çŽæ¡ä»¶ã»åœ¹å²ã»åœ¢åŒãæªæå®
â 察ç
- ã圹å²ã»ç®çã»å¶çŽã»åœ¢åŒãã®4èŠçŽ ã§ããã³ããèšèš
- ãµã³ãã«åºåã»ãã³ãã¬ãŒãåã§åçŸæ§æ ä¿
ð ææš
- å è¡ææšïŒãã³ãã¬ãŒãå©çšç
- åŸè¡ææšïŒåºå圢åŒéµå®çãã¬ãã¥ãŒå·¥æ°åæžç
ð æååºæº
- åºå圢åŒéµå®ç 95ïŒ ä»¥äž ã3ãæä»¥äžç¶æ
â †çŸå Žãªãã¬ãŒã·ã§ã³ãå€ãããâå®ã®æã¡è ãâ
çç¶ïŒã䟿å©ã ãæäœæ¥ã®æ¹ãæ©ãããšèšããã
åå ïŒæ¥åããã»ã¹ãAIåæã§åèšèšãããŠããªã
â 察ç
- æ¥åãããŒãAIåæã«åèšèšïŒäŸïŒAIäžæžãâäººéæ¿èªïŒ
- UI飿ºã»éç¥ã»æè²ãå«ããéçšUXããå°å ¥
ð ææš
- å è¡ææšïŒãã¬ãŒãã³ã°å®äºç
- åŸè¡ææšïŒAIåºåå©çšçãå·¥æ°åæžç
ð æååºæº
- å°å ¥6ãæä»¥å ã«AIåºåå©çšç 70ïŒ ä»¥äžãå·¥æ°åæž 25ïŒ ä»¥äž
â ⥠æ¹åãµã€ã¯ã«ãæ¢ãŸã粟床ãèœã¡ã
çç¶ïŒå°å
¥çŽåŸã¯ææãåºãããæ°ãæåŸã«ç²ŸåºŠãäœäž
åå ïŒæ¹åãµã€ã¯ã«ãèšèšãããŠããªãïŒããŒã¿æŽæ°ã»åè©äŸ¡ãå®åžžåããŠããªã
â 察çïŒPDCAã«ãŒãã®æç¢ºåïŒ
[æ¹åãµã€ã¯ã«æ§é å³]
ããŒã¿æŽæ° â ã¢ãã«ååŠç¿ â 粟床è©äŸ¡ â éçšåæ
âââââââââââââ²ââââââââââââ
- ããŒã¿æŽæ°é »åºŠã»åè©äŸ¡ã¿ã€ãã³ã°ã»è²¬ä»»è ãäºåå®çŸ©
- 粟床äœäžããªã¬ãŒïŒäŸïŒRecall -5ïŒ ïŒãæ€ç¥ããã¢ãã¿ãªã³ã°äœå¶ãæ§ç¯
ð ææš
- å è¡ææšïŒææ¬¡ã¬ãã¥ãŒå®æœçãæ¹åã¿ã¹ã¯å®äºç
- åŸè¡ææšïŒç²ŸåºŠæ¹åçããšã©ãŒçäœäžç
ð æååºæº
- ææ¬¡ã¬ãã¥ãŒå®æœç 90ïŒ ä»¥äž
- ååæããšã«ç²ŸåºŠæ¹åç +10ïŒ ä»¥äžãç¶ç¶
â ⊠ã³ã¹ãèšèšãçãâèµ€ååâãã
ð æååºæº
- 1åºåãããROI 1.2以äž
- TCOãåæèŠç©ã® ±15ïŒ ä»¥å
â ⧠責任äœå¶ãäžæç¢ºã§ãããžã§ã¯ããè¿·èµ°ãã
ð æååºæº
- KPIããšã®è²¬ä»»è ãææå
- æææ±ºå®ãªãŒãã¿ã€ã 7å¶æ¥æ¥ä»¥å
ð ãŸãšãïŒå€±æã¯âé¿ããããæªæ¥âã§ãã
倱æãã¿ãŒã³ | äž»å | 鲿¢ç | KPIäŸ | æååºæºïŒå®éïŒ |
---|---|---|---|---|
ç®çäžæ | èŠä»¶æªå®çŸ© | KPIãšèª²é¡ãæç¢ºå | CSæºè¶³åºŠ | 3ãæä»¥å ã«+15pt |
PoCæ¢ãŸã | æ¬çªèšèšæ¬ åŠ | KPIé£åã»éç®èšèš | æ¬çªç§»è¡ç | 90æ¥ä»¥å ã«çšŒå |
粟床äœäž | ããŒã¿å質äžè¯ | ååŠçã»æ§é å | Precision / Recall | P90ïŒ / R85ïŒ |
åºåäžå®å® | ããã³ããäžå | 仿§åã»ãã³ãã¬å | åºåéµå®ç | 95ïŒ ä»¥äž |
掻çšãããªã | æ¥ååèšèšäžè¶³ | ã¯ãŒã¯ãããŒæé©å | å©çšç | 6ãæä»¥å ã«70ïŒ |
æ¹å忢 | KPIæ¬ åŠ | æ¹åãµã€ã¯ã«èšèš | 粟床æ¹åç | +10ïŒ /ååæ |
ã³ã¹ãççº | èŠç©ãçã | ããŒã¯ã³æé©å | ROIã»TCO | ROI1.2ä»¥äž |
責任äžåš | äœå¶æªæŽå | ãªãŒããŒæç¢ºå | ãªãŒãã¿ã€ã | 7å¶æ¥æ¥ä»¥å |
â æ¬ç« ã®çµè«
- 倱æã®å€§åã¯ãæè¡åäžè¶³ãã§ã¯ãªããèšèšåäžè¶³ãã«èµ·å ãã
- 8ã€ã®å€±æãã¿ãŒã³ã¯ãäºåã®èŠä»¶å®çŸ©ãšæ§é èšèšã§äºé²å¯èœ
- æåã®éµã¯ããç®çã»ããŒã¿ã»èšèšã»è©äŸ¡ã»ã³ã¹ãã»äœå¶ããå®éæ¡ä»¶ä»ãã§æç¢ºã«å®çŸ©ããããšã«ãã
â»æ¬ç« ã«èšèŒãããäºäŸã»çµ±èšã»åŒçšã¯ãå ¬éæ å ±ãŸãã¯äžè¬åãããã¢ãã«ã±ãŒã¹ã«åºã¥ããã®ã§ãããç¹å®ã®äŒæ¥ã»çµç¹ã»å人ãæããã®ã§ã¯ãããŸããã
ð åèæç®
ã1ãMcKinsey & Company, âThe State of AI 2024,â 2024.
ã2ãGoogle Cloud, âRAG Adoption Best Practices,â 2023.
ã3ãGartner, âAI Deployment Challenges and Lessons,â 2024.
ã4ãIBM, âAI Adoption Index,â 2024.
æ¬¡ç« ã§ã¯ãæ¬ç« ã§æããã«ããã倱æãã¿ãŒã³éåŒãèšèšããèžãŸããå®éã«ææãåºããäŒæ¥äºäŸãåæãããåçŸå¯èœãªå°å ¥ã®æé©è§£ããå°ãåºããŸãã
第8ç« ïŒæåäºäŸããåŠã¶å°å ¥ã®æé©è§£ â åçŸæ§ã®ãããåãŠãæŽ»çšæŠç¥ã
ð§ ã¯ããã«ïŒãæåäŒæ¥ã«å ±éããâèšèšã®åâã¯ååšããã
ãAIå°å ¥ã§ææãåºãçµç¹ã¯ãäœãéãã®ãïŒã
ãã®åãã®çãã¯âéâãâæè¡åâã§ã¯ãããŸããã
åœå
å€ã®è€æ°äºäŸãåæãããšãæ¬çªå°å
¥ã§ææãäžããäŒæ¥ã®çŽ8ã9å²ãããæŠç¥ â èšèš â éçš â æ¹åããšããäžè²«ããããã»ã¹ãæã£ãŠããããšãããããŸãã1ãã
æåçµç¹ã«å
±éããã®ã¯ãAIãåãªãã䟿å©ãªéå
·ããšããŠã§ã¯ãªããæ¥åã»äºæ¥ã®äžæ žã€ã³ãã©ãšããŠåèšèšããŠããç¹ã§ãã
æ¬ç« ã§ã¯ãæ¥çš®ã»èŠæš¡ã»æŽ»çšé åã®ç°ãªãè€æ°äºäŸãããâæ¡ä»¶ãç°ãªã£ãŠãç¹°ãè¿ãçŸããæåãã¿ãŒã³âïŒåçŸæ§ã®ããèšèšç¥ãæœåºããŸãã
1ïžâ£ äºäŸâ ïŒåãåãã察å¿èªåå â ãç¥èããšãæå³ããæ¥ç¶ããèšèš
ð¢ äŒæ¥ãããã£ãŒã«
- æ¥çš®ïŒSaaSã«ã¹ã¿ããŒãµããŒã
- èæ¯ïŒåãåããä»¶æ°ãèšå€§åããåæå¿çãŸã§å¹³å1.8æ¥
- 課é¡ïŒå¯Ÿå¿ã³ã¹ãå¢å ãšé¡§å®¢æºè¶³åºŠäœäž
âïž å°å ¥æŠç¥
èŠçŽ | å 容 |
---|---|
ð¯ ç®ç | åæå¿çèªååã§å·¥æ°ã50ïŒ åæž |
ð ããŒã¿ | FAQã»å¯Ÿå¿å±¥æŽãªã©ãæ£èŠåã»åã蟌ã¿å |
ð§ ã¢ãŒããã¯ã㣠| RAGïŒãã³ãã¬ãŒãåããã³ãã |
𧪠è©äŸ¡ | æ£ççã»äžæ¬¡è§£æ±ºçã»CSæºè¶³åºŠãæ¯é±ã¬ãã¥ãŒ |
ð¡ ææ
- äžæ¬¡å¿çèªååçïŒ70ã92ïŒ
- å¹³åå¿çæéïŒ1.8æ¥ â çŽ4æé
- 皌åå·¥æ°ïŒ35ã45ïŒ åæž
ð æåã®æ¬è³ªïŒãRAGã§âç¥èâãæ¥ç¶ããããã³ããã§âæå³âãå¶åŸ¡ãããããšã§ãâãããããåçâããâå®çšçãªå¿çâãžæè¯ããŸããã
â»æ¬äºäŸã¯ç¬¬4ç« ã§æŽçãããç¥èç³»ã¿ã¹ã¯ã§ã®åŸæé åããæå€§é掻çšããå¿çšäŸã§ãã
2ïžâ£ äºäŸâ¡ïŒå¶æ¥ææ¡è³æã®èªåçæ â ãAIãèµ·ç¹ã«ãããçºæ³è»¢æ
ð¢ äŒæ¥ãããã£ãŒã«
- æ¥çš®ïŒBtoBã³ã³ãµã«ãã£ã³ã°
- èæ¯ïŒææ¡æžäœæã«1ä»¶ããã6ã8æé
- 課é¡ïŒäººçãªãœãŒã¹ã®å¶çŽã§ææ¡ä»¶æ°ã䌞ã³ãªã
âïž å°å ¥æŠç¥
èŠçŽ | å 容 |
---|---|
ð¯ ç®ç | ææ¡æžäœææéã70ïŒ åæžãææ¡ä»¶æ°ãåå¢ |
ð ããŒã¿ | éå»ææ¡æžã»æåæ¡ä»¶åæã»é¡§å®¢ãã¢ãªã³ã° |
ð§ ã¢ãŒããã¯ã㣠| AgentïŒFunction CallingïŒCRM飿ºïŒ |
𧪠ããã»ã¹ | AIãäžæžã â 人éãã¬ãã¥ãŒ â æçµçµ±å |
ð¡ ææ
- äœææéïŒ6h â çŽ1.5ã2h
- ææ¡ä»¶æ°ïŒæ40ä»¶ â 80ã95ä»¶
- åæ³šçïŒ+6ã10pt
ð æåã®æ¬è³ªïŒãAIãâè£å©âã§ã¯ãªãâèµ·ç¹âã«æ®ãããããšã§ãåãªãå¹çåã§ã¯ãªã**âæ¡ä»¶åµåºåâãã®ãã®ãæ¡åŒµ**ããŸããã
â»ããã¯ç¬¬6ç« ã§è¿°ã¹ããããã»ã¹èšèšã®åæ§ç¯ãã®å¥œäŸã§ããããŸãã
3ïžâ£ äºäŸâ¢ïŒãã¬ããžå ±æ â ãæ¢çŽ¢ããããæµéããž
ð¢ äŒæ¥ãããã£ãŒã«
- æ¥çš®ïŒè£œé æ¥ïŒåŸæ¥å¡5,000åèŠæš¡ïŒ
- èæ¯ïŒèšå€§ãªææžãæ£åšãæ å ±æ¢çŽ¢ã«å¹³å30å
- 課é¡ïŒãç¥ã£ãŠãã人ã«èããæåãæ ¹åŒ·ã
âïž å°å ¥æŠç¥
èŠçŽ | å 容 |
---|---|
ð¯ ç®ç | ãã¬ããžæ¢çŽ¢ã»æŽ»çšæéã50ïŒ ä»¥äžåæž |
ð ããŒã¿ | çŽ50äžä»¶ã®ææžã»å³é¢ã»å ±åæžãåã蟌ã¿å |
ð§ ã¢ãŒããã¯ã㣠| RAGïŒChat UIïŒç€Ÿå ããŒã¿ã«é£æºïŒ |
𧪠éçš | å©çšãã°åæã»ã¯ãšãªãšåã蟌ã¿ã®ç¶ç¶æ¹å |
ð¡ ææ
- æ€çŽ¢æéïŒ30å â çŽ5å
- å©çšçïŒ5ã10å
- åå©çšã³ã³ãã³ãæ°ïŒ3ã4å
ð æåã®æ¬è³ªïŒãAIãâçããè£ çœ®âããâç¥èã®æµéåºç€âãžã転æããæ å ±ãã®ãã®ã®äŸ¡å€ãæå€§åããŸããã
4ïžâ£ äºäŸâ£ïŒããŒãœãã©ã€ãºæšèŠ â äžå°BtoCã§ãææãåºã
ð¢ äŒæ¥ãããã£ãŒã«
- æ¥çš®ïŒECå°å£²ïŒåŸæ¥å¡50åïŒ
- èæ¯ïŒç«¶äºæ¿åã§CVRäœè¿·
- 課é¡ïŒäººçãªãœãŒã¹ã®å¶çŽã§æ¹åãé²ãŸãªã
âïž å°å ¥æŠç¥
èŠçŽ | å 容 |
---|---|
ð¯ ç®ç | ã¬ã³ã¡ã³ãèªååã§CVRã30ïŒ æ¹å |
ð ããŒã¿ | 顧客屿§ã»é²èЧã»è³Œå ¥å±¥æŽãå¿ååã»åã蟌㿠|
ð§ ã¢ãŒããã¯ã㣠| AgentïŒFunction CallingïŒååDB飿ºïŒ |
𧪠éçš | æ¯æã¢ãã«ã»ããžãã¯ãã¬ãã¥ãŒæ¹å |
ð¡ ææ
- CTRïŒ+45ïŒ
- CVRïŒ+28ã35ïŒ
- 顧客å䟡ïŒçŽ1.4å
ð æåã®æ¬è³ªïŒã顧客æèã«æ²¿ã£ãããŒãœãã©ã€ãºææ¡ãã«ãããäžå°äŒæ¥ã§ãâ売äžçŽçµâã®ææãå®çŸããŸããã
5ïžâ£ äºäŸâ€ïŒæ°èŠïŒïŒæ¥åºäºæž¬ãšèªåè²©ä¿ â äžå°åºèã§ã®åçŸæ§
ðª äŒæ¥ãããã£ãŒã«
- æ¥çš®ïŒé£²é£ãã§ãŒã³ïŒåŸæ¥å¡30åïŒ
- èæ¯ïŒæ¥åºæ°ã®å€åãæ¿ããã人件費ãšä»å ¥ããéå¹ç
- 課é¡ïŒäººæã§ã®éèŠäºæž¬ã»è²©ä¿æé©åã«éç
âïž å°å ¥æŠç¥
èŠçŽ | å 容 |
---|---|
ð¯ ç®ç | æ¥åºäºæž¬ç²ŸåºŠ80ïŒ è¶ ã§åšåº«ã»äººå¡é 眮ãæé©å |
ð ããŒã¿ | POSã»å€©åã»ã€ãã³ãã»é廿¥åºå±¥æŽãªã© |
ð§ ã¢ãŒããã¯ã㣠| AgentïŒFunction CallingïŒPOSã»è²©ä¿API飿ºïŒ |
𧪠éçš | æ¯é±äºæž¬ç²ŸåºŠãã¬ãã¥ãŒãè²©ä¿æœçãšé£å |
ð¡ ææ
- 廿£ã³ã¹ãïŒ-35ïŒ
- 販ä¿CTRïŒ+42ïŒ
- æ¥åºæ°ïŒæå¹³å+18ïŒ
ð æåã®æ¬è³ªïŒ**ãAIã«ããéèŠäºæž¬Ãèªå販ä¿ã**ãå°èŠæš¡äºæ¥ã§ãçŸå®çROIããããããBtoCã»äžå°äŒæ¥ã®åçŸæ§ãå®èšŒããŸããã
æåäºäŸã«å ±éããã5ã€ã®ååã
åå | å 容 | æå³ |
---|---|---|
â ç®çèµ·ç¹ | æè¡éžå®ã§ã¯ãªãKPIããéç®èšèš | ææãå®éåã§ãã |
â¡ ããŒã¿æŽå | æ§é åã»æ£èŠåã»æ€çŽ¢æé©åãåŸ¹åº | åºåå質ã®7å²ã¯ããŒã¿ã§æ±ºãŸãã2ã |
⢠ã¯ãŒã¯ãããŒåèšèš | AIãšäººéã®åœ¹å²ãåå®çŸ© | âè£å©âã§ã¯ãªãâå ±åµâã«ãªã |
⣠è©äŸ¡ãšæ¹å | 粟床ã»ã³ã¹ãã»æºè¶³åºŠãç¶ç¶æž¬å® | ææãæç¶çã«äŒžã°ãã |
â€ ç€Ÿå æµžé | æè²ã»éçšã¬ã€ãã»æåäœéšå ±æ | å šç€Ÿã¬ãã«ã§å®çå¯èœ |
ð åçŸæ§ã®æ ¹æ ïŒãç°ãªãæ¡ä»¶äžã§ãåãååãç¹°ãè¿ãçŸãããããšãã**âå¶ç¶ã®æåâã§ã¯ãªãâæ§é çãªæåâ**ã§ãã蚌æ ã§ãã
æååçŸã®ã3ã€ã®åææ¡ä»¶ã
- â ããŒã¿åè³ªã®æ ä¿ïŒéè€ã»ãã€ãºé€å»ãã¡ã¿ããŒã¿æŽå
- â çµç¹çåæåœ¢æïŒãAIåæã®æ¥åèšèšãã«å¯Ÿãã瀟å åæ
- â ç¶ç¶æ¹åäœå¶ïŒKPIã¬ãã¥ãŒãã¢ãã«æŽæ°ãéçšã¬ã€ãæ¹èš
GartnerïŒ2024ïŒã«ããã°ããã®3æ¡ä»¶ãæºããäŒæ¥ã¯ROIãå¹³å2.7åé«ãã3ãã
ð¯ ãŸãšãïŒãæåãšã¯âèšèšåâã®ææã§ããã
- æåäŒæ¥ã¯ãæè¡åãã§ã¯ãªãããç®çã»ããŒã¿ã»èšèšã»éçšããäžè²«ããŠæ§ç¯ããŠããã
- âAI掻çšâã§ã¯ãªããâAIåæã®æ¥ååèšèšâãããç«¶äºåªäœã®æºæ³ãšãªãã
- ã5ã€ã®ååããšã3ã€ã®åææ¡ä»¶ããæŒãããã°ãæ¥çš®ã»èŠæš¡ã»BtoB/BtoCãåããåçŸå¯èœã§ããã
ð æ¬ç« ã§æœåºãããèšèšç¥ãã¯ã第9ç« ä»¥éã®æªæ¥æŠç¥ããŒããããã第11ç« ã®æŠç¥çå°å ¥æéã®âåå°âãšããŠæ©èœããŸããããããå ã¯ããæåãã¿ãŒã³ãã©ãæŠç¥çã«å±éãããããšããæ¬¡ã®ã¹ããŒãžãžãšé²ã¿ãŸãããã
â»æ¬ç« ã®äºäŸã¯ãå ¬é調æ»ããã³è€æ°äŒæ¥äºäŸãããšã«ç·šéãããã¢ãã«ã±ãŒã¹ãã§ãããç¹å®ã®äŒæ¥ã»å£äœã»å人ãæããã®ã§ã¯ãããŸããã
ð åèæç®
ã1ãMcKinsey & Company, âThe State of AI 2024,â 2024.
ã2ãIDC. Data-Driven AI Adoption: Why 70% of AI success depends on data. 2024.
ã3ãGartner. 2025 AI Deployment Benchmark: ROI, Data, and Organizational Readiness. 2024.
第9ç« ïŒä»åŸã®å±æãšæŠç¥çã¢ãããŒã â 2025幎以éã®AI掻çšãèªã¿è§£ã
ð§ ã¯ããã«ïŒãAI掻çšã®æ¬çªã¯ããŸã å§ãŸã£ãŠããªãã
2023ã2024幎ã¯ãçæAIå
幎ããšåŒã°ããŸãããããããããã¯ãããŸã§**âå
¥å£â**ã«ãããŸããã
2025幎以éãAIã¯ã䟿å©ãªæ¥åæ¯æŽããŒã«ããè¶
ããäŒæ¥ã»çµç¹ã»ç£æ¥ã®âæ§é âãã®ãã®ãåèšèšããäžæ žã€ã³ãã©ãžãšé²åããŠãããŸãã
æ¬ç« ã§ã¯ãä»åŸ5ã10å¹Žã®æè¡ã»æ¥åã»çµç¹ã»ç€ŸäŒã®é²åã俯ç°ãã€ã€ãå®åè ãä»ããåãã¹ãå ·äœã¢ã¯ã·ã§ã³ããªã¹ã¯å¯Ÿçã®åªå é äœãKPIã®éçšèšèšãŸã§èžã¿èŸŒãã§è§£èª¬ããŸãã
â æè¡ã®é²åïŒãçæããããèªåŸã»è€åããž â æ®µéçããŒãããã
å€§èŠæš¡èšèªã¢ãã«ïŒLLMïŒã¯ããæç« ãçæããAIãããã**è€æ°ã®ããŒã«ãã·ã¹ãã ãçµ±åããŠèªåŸçã«æ¥åãéè¡ããâç¥çãªãã¬ãŒã·ã§ã³å±€â**ãžãšé²åããŠãããŸãã
ãã§ãŒãº | æè¡é²å | æå³ããããš |
---|---|---|
2023ã2024 | é«ç²ŸåºŠèªç¶èšèªçæ | äŒè©±ã»èŠçŽã»å·çãäººéæ°Žæºã« |
2025ã2026 | èªåŸãšãŒãžã§ã³ãå | è€æ°ã¹ãããæèã»èšç»ã»åå²ãå¯èœã« |
2026ã2027 | ãã«ãã¢ãŒãã«çµ±å | ç»åã»é³å£°ã»ã³ãŒãã»æäœãäžäœåŠç |
2027ã2028 | ãªãŒã±ã¹ãã¬ãŒã·ã§ã³ | è€æ°AIã»APIãå調ãèªåŸé£æº |
2028ã2030 | æææ±ºå®æ¯æŽAI | çµå¶ã»æŠç¥çå®ã¬ãã«ã®å€ææ¯æŽ |
ð æ¬è³ªç転æïŒãèªç¶èšèªãâçæâããAIããããæ¥åãâéè¡âããAIããžã
â¡ æ¥åã®é²åïŒãAIåæèšèšããžã®ãã©ãã€ã ã·ãã
AIã¯æ¥åããæ¯æŽãããã®ããããåæãšãããã®ããžãšå€ãããŸãã
æ¥åã®OSãã®ãã®ãåæ§ç¯ããAIãèµ·ç¹ãšãªãã¯ãŒã¯ãããŒèšèšãæ±ããããŸãã
æ¥åé å | çŸåš | 2025幎以éã®å§¿ |
---|---|---|
äŒç» | 人ãè³æã»ææ¡ãäœæ | AIããã©ãã â äººã¯æ€èšŒã»æææ±ºå®ãž |
éçº | 人ãèŠä»¶å®çŸ©ã»èšèš | AIã仿§åçš¿ â 人ãã¬ãã¥ãŒã»è£æ£ |
å¶æ¥ | æ åœè ãææ¡è³æäœæ | AIãææ¡çæ â 人ã¯äº€æžã»æŠç¥ãžéäž |
CS | 人ãåãåããå¯Ÿå¿ | AIãåæå¯Ÿå¿ â 人ã¯é«åºŠå€æãž |
ð æ§é 転æïŒãAIãæ¯æŽããæ¥åããããAIãèµ·ç¹ãšãªãæ¥åããžã
⢠çµç¹ã®é²åïŒã䜿ãã人ããããèšèšã§ãã人ããž
AIãåæãšãªãæä»£ã䟡å€ãé«ãã®ã¯**ãAIãšäººéã®åœ¹å²åæ ãèšèšããæ§é ãåµãåºã人ã**ã§ãã
èœå | å 容 | äŸ¡å€ |
---|---|---|
ð§ èšèšå | AIãšäººéã®åœ¹å²åæ ã»ããã»ã¹åèšèš | â â â â â |
ð è©äŸ¡å | AIåºåã»ææãå®éè©äŸ¡ã»æ¹å | â â â â â |
ð§ åé¡å®çŸ©å | AIãè§£ãã¹ã課é¡ãèšèªå | â â â â â |
ð» å®è£ çè§£å | APIã»RAGã»ãšãŒãžã§ã³ãæ§æã®çè§£ | â â â ââ |
ð äººææŠç¥ã®çŠç¹ïŒãAIã䜿ã人ãã§ã¯ãªãããAIãšå ±ã«æ§é ãåµã人ãã
⣠瀟äŒã»ç£æ¥æ§é ã®é²åïŒãAIåæçµæžããžã®ç§»è¡
AIã¯ç£æ¥ã®OSå±€ã«çµã¿èŸŒãŸãããå°å ¥ããäŒæ¥ãã§ã¯ãªããAIãšå ±é²åããäŒæ¥ãã䞻圹ã«ãªããŸãã
åé | å€åã®æ¹åæ§ | äž»ãªåœ±é¿ |
---|---|---|
SaaSã»IT | LLMæšæºæèŒãå·®å¥åã¯ãèšèšåããž | åæ©èœãµãŒãã¹ã¯æ·æ±° |
æè² | ãçãããããåãããéèŠ | è©äŸ¡è»žã»ã«ãªãã¥ã©ã ã®åæ§ç¯ |
æ³åã»äŒèš | AIãäžæ¬¡åŠçã人ã¯é«åºŠå€æãž | è·èœã®åå®çŸ© |
補é ã»ç©æµ | èªåŸãšãŒãžã§ã³ããèšç»ã»æé©å | 人éã¯äŒç»ã»æŠç¥ãžéäž |
éèã»å»ç | èŠå¶éèŠã»æ®µéå°å ¥ | å°å ¥ææã»ç¯å²ã«å·®ãåºã |
†ãªã¹ã¯ãšå¶çŽ â æåã®âåææ¡ä»¶âãæŽãã
AI掻çšãæŠç¥çã«é²ããããã«ã¯ããçºç確ç à 圱é¿åºŠ à ã³ã¹ãããèžãŸããåªå 床ä»ããªã¹ã¯ãããªã¯ã¹ãäžå¯æ¬ ã§ãã
ãªã¹ã¯åªå 床ãããªã¯ã¹
åªå 床 | ãªã¹ã¯é å | å 容 | 察å¿ç |
---|---|---|---|
â â â â â | ããŒã¿ã¬ããã³ã¹ | æ©å¯ããŒã¿ã®ç®¡çäžå | åé¡ã»å¿ååã»ã¢ã¯ã»ã¹å¶åŸ¡ã»ç£æ»äœå¶ |
â â â â â | ä¿¡é Œæ§ã»ãã€ã¢ã¹ | åºå誀ãã»åå | è©äŸ¡ææšå°å ¥ã»RAGæ€èšŒã»ã¬ãã¥ãŒçµ±å |
â â â ââ | æ³èŠå¶ã»èª¬æè²¬ä»» | GDPRã»AIæ³éåãªã¹ã¯ | èª¬æææžã»ç£æ»ãã°ã»å§å¡äŒèšçœ® |
â â âââ | å°å ¥æ Œå·® | äžå°äŒæ¥ã»èŠå¶æ¥çã§ã®é å»¶ | 段éå°å ¥ã»PoCã»ããŒãããŒé£æº |
ð æææ±ºå®ã®åãïŒãå°å ¥ã§ããããã§ã¯ãªãããäœå¶ã»å¶åºŠã»ã³ã¹ããå«ãèšèšã§ããããã
⥠å®è£ ããŒãããããšãä»ããçæãã¹ããå®åã¢ã¯ã·ã§ã³
æªæ¥ãå åãããäŒæ¥ã¯ããäžå±€æŠç¥ à KPI à ãã§ãã¯ãªã¹ããã§å®è£ ãéç®ããŠããŸãã
äžå±€æŠç¥ à KPIããŒãããã
ãã§ãŒãº | ç¥èåºç€æŠç¥ | æ¥åèšèšæŠç¥ | ãšã³ã·ã¹ãã æŠç¥ | KPIäŸ |
---|---|---|---|---|
åæïŒã2025ïŒ | ç€Ÿå ææžæŽåã»RAGå°å ¥ | AIé©çšæ¥åã®æŽãåºã | API飿ºã»PoCæ§ç¯ | RAG掻çšç50ïŒ / ææžæŽåç80ïŒ |
äžæïŒ2026ã2027ïŒ | ãã¬ããžã°ã©ãã»èªç€ŸLLMæ§ç¯ | æææ±ºå®æ¯æŽå°å ¥ | å€éšããŒã«çµ±åã»OSåèšèš | æææ±ºå®æ¯æŽ3éšé / æ¥åå¹ç+30ïŒ |
é·æïŒ2028ã2030ïŒ | ç¶ç¶åŠç¿ã»ç¥èœè³ç£å | èªå·±æ¹åã«ãŒãæ§ç¯ | å šç€Ÿã€ã³ããªãžã§ã³ã¹å | AIäž»å°æ¥åæ¯ç60ïŒ / å šç€Ÿçµ±åå®äº |
â å®åè åããã§ãã¯ãªã¹ãïŒè¡åã¿ã¹ã¯ïŒ
ææ | ã¢ã¯ã·ã§ã³ | æååºæºïŒKPIïŒ |
---|---|---|
2024ã2025 | 瀟å ããŒã¿ã®æ£åžã»åé¡ | ããŒã¿åé¡ç80ïŒ |
2024ã2025 | AIå°å ¥PoC察象ã®åªå é äœæ±ºå® | ROIäžäœ5ä»¶éžå® |
2025ã2026 | RAGïŒãšãŒãžã§ã³ãæ§æPoC宿œ | 粟床80ïŒ ä»¥äž |
2026ã2027 | åºåè©äŸ¡ã»æ¹åäœå¶ã®ç¢ºç« | ææ¬¡ã¬ãã¥ãŒéçš |
2027ã2028 | å šç€Ÿãã¬ããžçµ±ååºç€ã®æ§ç¯ | æ€çŽ¢æéâ²50ïŒ |
ð KPIéçšãã³ãã¬ãŒãïŒæž¬å®ã»è©äŸ¡äœå¶ïŒ
KPI | æž¬å®æ¹æ³ | è©äŸ¡é »åºŠ | æ åœéšé |
---|---|---|---|
RAG掻çšç50ïŒ | å©çšãã°è§£æ | ææ¬¡ | æ å ±ã·ã¹ãã éš |
æææ±ºå®æ¯æŽ3éšéå°å ¥ | éšéã¬ããŒãåæ | ååæ | åäºæ¥æ¬éš |
AIäž»å°æ¥åæ¯ç60ïŒ | èªååçèª¿æ» | åæ | DXæšé²å®€ |
ð§ æ¬ç« ãŸãšãïŒãAIã¯âæªæ¥ã®éå ·âã§ã¯ãªãâæªæ¥ãã®ãã®âã
â
LLMã¯ãçæããããèªåŸã»æææ±ºå®ããžé²åãã
â
æ¥åã¯ãAI掻çšããããAIåæèšèšããžåå®çŸ©ããã
â
人æã¯ã䜿ã人ããããèšèšãã人ããžäŸ¡å€ãç§»è¡ãã
â
ç£æ¥ã¯ãå°å
¥ããããå
±é²åããžãšç«¶äºè»žãå€ãã
â
æåã®éµã¯ãå°å
¥ãã§ã¯ãªãããå¶åºŠã»æ§é ã»KPIãå«ããåèšèšãã«ãã
ð æçµçãªåãïŒãAIãå°å
¥ããããã§ã¯ãªãã
ðãAIãåæã®æªæ¥ã«ãããŠãèªç€Ÿãã©ãåèšèšããããã§ããã
æ¬¡ç« ã§ã¯ãAIå°å ¥ã®çŸå Žã§å€ãã®çµç¹ãçŽé¢ãã**â誀解ã»äžå®ã»å£â**ãFAQ圢åŒã§è§£ãã»ãããåææ®µéã®å€±æãæªç¶ã«é²ãããã®å®è·µè§£ãæç€ºããŸãã
第10ç« ïŒå°å ¥ååŸã«ãããã誀解ãšå¿ççéå£ â æåçã2åã«ããâèªèèšèšâ
ð§ ã¯ããã«ïŒã誀解ãã¯âè§£ãâã ãã§ãªãâèšèšããâ察象ã§ãã
AIå°å
¥ã倱æããæå€§ã®çç±ã¯ããã¢ãã«æ§èœãã§ããæè¡åãã§ããããŸããã
æ¬è³ªçãªããã«ããã¯ã¯ãâ誀解ã»äžå®ã»å¿ççæµæâãšãã人éåŽã®æ§é ã§ãã
McKinseyãThe State of AI 2024ãã«ããã°ãPoCïŒæŠå¿µå®èšŒïŒããæ¬çªå°å ¥ã«è³ããªãã£ãAIãããžã§ã¯ãã®**çŽ72ïŒ **ãããèŠä»¶ã®èª€è§£ãããçµç¹çè§£ã®æ¬ åŠãã«èµ·å ããŠããŸããã1ãã
ãã®ç« ã¯ã第7ç« ãæ±ã£ããæ§é ç倱æãã¿ãŒã³ããšã¯ç°ãªããâ人éã®èªèã®ã£ããâãšããå¿çå±€ãäžå¿ã«è§£ãæãããŸãããããŠèª€è§£ãåã«è§£æ¶ããã®ã§ã¯ãªãããèšèšèŠä»¶ããžãšè»¢æããããšãããæåã®éµã§ãã
ð 誀解ã®4å±€ããã â æè¡ã»éçšã»çµç¹ã»å¿çã®æ§é åæ
誀解局 | äž»ãªçºçèŠå | å žåçãªèª€è§£ | è§£æ¶ã»èšèšã®éµ |
---|---|---|---|
ð§ æè¡ç誀解 | LLMã®ä»çµã¿ã»éçã®çè§£äžè¶³ | ãAIã¯äžèœããäžåºŠå°å ¥ããã°å®æã | å¶åŸ¡èšèšã»ä»æ§çè§£ |
ð§ éçšç誀解 | PoCãšæ¬çªã®èªèå·®ã»èŠä»¶æªå®çŸ© | ãPoCæåïŒæ¬çªæåãã粟床ãäœãïŒAIã®ããã | æ¥åèšèšã»è©äŸ¡åºæº |
ð¢ çµç¹ç誀解 | 人æã»åœ¹å²ã»å¶åºŠãšã®äžæŽå | ãAIã¯äººã眮ãæããããçŸå Žã¯æµæããã | 圹å²åèšèšã»å ±åµããã»ã¹ |
ð§ å¿çç誀解 | èªç¥ãã€ã¢ã¹ã»å¿ççå®å šæ§ã®æ¬ åŠ | ãèªååã¯è åšããçŸå Žã¯çè§£ããªãã | äžå®èŠå ã®å¯èŠåã»å¿çèšèš |
ð§ æè¡ç誀解 â ãAIã¯äžèœããééããªãããäžåºŠå ¥ããã°çµããã
Q1. ãAIå°å ¥ã§æ¬åœã«ææã¯åºãŸããïŒã
â A. ææã¯åºãŸãããâã©ãã«äœ¿ããâã§10åã®å·®ãåºãŸãã
AIã¯âéæ³ã®æâã§ã¯ãããŸããããé©åãªèª²é¡éžå®ãšèšèšã«ããROIã¯å¹³å3ã6åãæé©æ¡ä»¶ã§ã¯10åè¶ ã®äºäŸãå ±åãããŠããŸãã2ãã
- æ å ±æŽçã»èŠçŽ â å·¥æ°70ã90ïŒ åæžã2ãã3ã
- ææ¡æžçæ â äœæ¥é床3ã5ååäžã2ãã3ã
- CSèªåå¿ç â æ åœè å·¥æ°60ã80ïŒ åæžã1ãã5ã
ð èšèšèŠä»¶åïŒãäžèœè£ 眮ãã§ã¯ãªããè£å©è£ 眮ããšããŠçµã¿èŸŒãããšã
Q2. ãAIãééã£ãæ å ±ãåºãã®ãäžå®ã§ãã
â A. â誀åºåâã¯ä»æ§ã§ããå¶åŸ¡èšèšãæ¬è³ªã§ãã
LLMã¯ãæ¬¡ã«æ¥ãèªã確ççã«äºæž¬ãããä»çµã¿ã®ããã誀åºåãŒãã¯äžå¯èœã§ããããããRAGïŒå€éšç¥èæ¥ç¶ïŒã»ã¬ãã¥ãŒå·¥çšã»è©äŸ¡ææšã®å°å ¥ã«ããã誀åºåçã¯60ã85ïŒ æå¶ã§ããŸãã4ãã
ð èšèšèŠä»¶åïŒãæ£è§£è£ 眮ãã§ã¯ãªããå¶åŸ¡å¯èœãªç¢ºçè£ çœ®ããšããŠèšèšããã
Q3. ãäžåºŠå°å ¥ããã°å®æã§ããïŒã
â A. å°å ¥ã¯âã¹ã¿ãŒãã©ã€ã³âã§ããç¶ç¶æ¹åãæ¬çªã§ãã
Accentureã«ãããšãAIã®ROIã¯ãåæå°å ¥ à æ¹ååæ°ãã®æãç®ã§æé·ããæ¹åãæ¢ãããš3ã6ã¶æã§ROIæé·ã¯æšªã°ãã«ãªããŸãã3ãã
ð èšèšèŠä»¶åïŒãå°å ¥ãã§ã¯ãªããæ¹åããã»ã¹ããå«ããŠèšèšããã
ð§ éçšç誀解 â ãPoCæåïŒæ¬çªæåãã粟床ãäœãïŒAIã®ããã
Q4. ãæã£ããããªåçãè¿ã£ãŠããŸããã
â A. åå ã¯å€ãã®å Žåâããã³ããèšèšâã§ãã
Anthropicã®èª¿æ»ã«ããã°ãåºå粟床ã®80ã90ïŒ ã¯ããã³ããèšèšã§æ±ºå®ãããŸãã4ãã
- åœ¹å²æå®ïŒãããªãã¯â¯â¯ã®å°éå®¶ã§ãã
- ç®çæç¢ºïŒããã®ç®çã§â¯â¯ã説æããŠãã ããã
- å¶çŽæ¡ä»¶ïŒã圢åŒã»æåæ°ã»èªè å±€ã
ð èšèšèŠä»¶åïŒãåºå仿§æžããšããŠããã³ãããèšèšããã
Q5. ãPoCãŸã§ã¯æåããã®ã«æ¬çªã§æ¢ãŸããŸããã
â A. PoCãšæ¬çªã¯âå¥ãããžã§ã¯ãâã§ãã
PoCã¯ãæè¡æ€èšŒããæ¬çªã¯ãæ¥åã»çµç¹ãžã®çµ±åãã§ãã倱æèŠå ã®å€§åã¯éæè¡çèŠçŽ ïŒåœ¹å²å®çŸ©ã»å€æãããŒã»API飿ºèšèšãªã©ïŒã§ãã1ãã
ð èšèšèŠä»¶åïŒãåäœãã§ã¯ãªããçµ±åããã»ã¹ããèšèšã®äžå¿ã«æ®ããã
ð¢ çµç¹ç誀解 â ãAIã¯äººã眮ãæããããçŸå Žã¯å察ããã
Q6. ãçŸå Žãå°å ¥ã«æµæããŸãã
â A. æµæã®æ¬è³ªã¯â圹å²åªå€±ãžã®äžå®âã§ãã
Deloitteã«ããã°ã**çŸå Žæµæã®çŽ66.8ïŒ
**ããèªåã®åœ¹å²ããªããªãããšãžã®äžå®ãã«èµ·å ããŸãã5ãã
æåäŒæ¥ã¯ãããã圹å²åèšèšããšããŠå°å
¥ããŠããŸãïŒ
AIãæ ãé å | 人éãæ ãé å |
---|---|
æ å ±æŽçã»åæå¯Ÿå¿ | å€æã»æ€èšŒã»åµé ã»æŠç¥ |
ð èšèšèŠä»¶åïŒã圹å²åå®çŸ©ãããªã¹ããªã³ã°ããè©äŸ¡å¶åºŠããã»ããã§èšèšããã
ð§ å¿çç誀解 â èªç¥ãã€ã¢ã¹ãšãå®å šã§ãªãç°å¢ããæåãé»ã
Q7. ãAIå°å ¥ïŒèªåã®äŸ¡å€ãäžããããšæãããŠãã
â A. âè åšèªèâã¯èªç¶ãªåå¿ã§ããèšèšã§è§£æ¶ã§ããŸãã
- èªååè åšãã€ã¢ã¹ïŒãAIãèªåãäžèŠã«ããã
- çµéšåãã€ã¢ã¹ïŒãä»ãŸã§éãã§åé¡ãªãã
- é壿èïŒãä»éšçœ²ããã£ãŠããªãã
ð èšèšèŠä»¶åïŒãå°ããªæåäœéšããå ±åµãããžã§ã¯ãããå¯èŠåããã圹å²é²åããéããŠâå¿ççå®å šæ§âãèšèšããã
ð 誀解ãšèšèšèŠä»¶ã®ãããªã¯ã¹ïŒç·åŸ©ç¿ïŒ
誀解 | æ£ããçè§£ | èšèšèŠä»¶ |
---|---|---|
AIã¯äžèœ | ææã¯âèšèšâ次第 | è£å©è£ 眮ãšããŠèšèš |
ééãã®ã¯èŽåœç | ééãã¯â仿§â | å¶åŸ¡èšèšã§å¯ŸåŠ |
äžåºŠå°å ¥ããã°å®æ | æ¹åãæ¬çª | ç¶ç¶æ¹åããã»ã¹èšèš |
PoCãåãã°æ¬çªãåã | PoCãšæ¬çªã¯å¥ | çµ±åèšèš |
åºå粟床ãäœãïŒAIã®ãã | å€ãã¯ããã³ããã®åé¡ | ããã³ãã仿§èšèš |
å°å ¥ã§äººãäžèŠã«ãªã | 人ã®åœ¹å²ã¯é²åãã | 圹å²åèšèšã»å¶åºŠé£å |
çŸå Žã¯å¿ ãæµæãã | å ±åµãšå¿çèšèšã§å容 | å°æåã»å ±åµèšèš |
ð ROIã®åºæºå€ïŒçµ±åããŒã¿ïŒ
ãã§ãŒãº | ç®æšROI | æåäŒæ¥ã®å¹³åå€ |
---|---|---|
åæå°å ¥ïŒ3ã6ã¶æïŒ | 1.5ã2.0å | çŽ1.8åã2ãã3ã |
æ¹åãã§ãŒãºïŒ6ã12ã¶æïŒ | 3ã6å | çŽ4.2åã2ãã3ã |
æé©åãã§ãŒãºïŒ12ã¶æãïŒ | 6ã10å | çŽ7.5åã2ãã3ã |
ð§ æ¬ç« ã®çµè«ïŒã誀解ãã¯âè§£ãâã ãã§ãªãâèšèšâã«æŽ»ãã
AIå°å
¥ã®æåŠã¯ããã©ã®ã¢ãã«ã䜿ãããã§ã¯ãªãã**âã©ã®èª€è§£ãã©ãèšèšèŠä»¶ã«å€ãããããâ**ã§æ±ºãŸããŸãã
誀解ã»äžå®ã»æµæã¯æµã§ã¯ãªããæåæŠç¥ã®åºçºç¹ã§ãã
â
æåã®æ¬è³ªã¯âæè¡âã§ã¯ãªãâçè§£ãšèšèšâã«ãã
â
誀解ã»äžå®ã»æµæã¯ãå¿çèšèšããšã察話ãã§è§£æ¶ã§ãã
â
ã誀解ãèŠä»¶ã«å€ããããšããèŠç¹ããå°å
¥æåçã2åã«ãã
ð åèæç®äžèЧ
ã1ãMcKinsey, The State of AI 2024
ã2ãPwC, AI and ROI Benchmark Report 2024
ã3ãAccenture, AI Business Impact Study 2024
ã4ãAnthropic, Prompt Engineering Whitepaper 2024
ã5ãDeloitte, Future of Work and AI Adoption 2024
第11ç« . ãŸãšããšæ¬¡ã®äžæ â AIå°å ¥ãâæŠç¥âããâçŸå®âãž
ð§ ã¯ããã«ïŒãAIå°å ¥ãã¯âãŽãŒã«âã§ã¯ãªãâåºçºç¹âã§ãã
ãããŸã§èŠãŠããããã«ãAI/LLMã®å°å
¥ãšã¯ãåãªããæ°ããããŒã«ã®æ¡çšãã§ã¯ãããŸããã
æ¬è³ªã¯ãæ¥åã»çµç¹ã»äŸ¡å€åµåºã®âæ§é âãã®ãã®ãåèšèšãããããžã§ã¯ãã§ãã
ãããŠæ¬åœã«åãããã¹ãã¯ããå°å
¥ãããã©ãããã§ã¯ãããŸããã
**âå°å
¥ã«ãã£ãŠäœãå€ããã©ã®ãããªæªæ¥ãåµããâ**ããããç«¶äºåãæ±ºå®ã¥ããŸãã
McKinseyã®èª¿æ»ïŒ2024ïŒã«ããã°ãçæAIãæŽ»çšããäŒæ¥ã®çŽ70ïŒ ããæ¥åããã»ã¹ã®åèšèšããåæã«é²ããŠããã1ããAIã¯ä»ãâ䟿å©ãªããŒã«âã§ã¯ãªã**äºæ¥ã®OSïŒåºç€ïŒ**ãšããŠäœçœ®ã¥ãããã€ã€ãããŸãã
â æ¬èšäºã§æŽçããã10ã®æ žå¿ãã€ã³ããïŒç·åŸ©ç¿ïŒ
ãããŸã§ã®10ç« ã§æããã«ãªã£ãã®ã¯ããAIå°å
¥ãã¯æè¡è«ã§ã¯ãªããçµå¶ã»æ¥åã»çµç¹ã®åèšèšæŠç¥ã§ãããšããäºå®ã§ãã
ãããŸã§ã®è°è«ãã以äžã®10é
ç®ã«éçŽããŸãïŒ
ãã§ãŒãº | æ žå¿ãã€ã³ã | æå³ããããš |
---|---|---|
1ïžâ£ å šäœå | AIã¯ãçæããããæ¥åã€ã³ãã©ããž | äžéæ§ã®æµè¡ã§ã¯ãªãäºæ¥ã®åå°ã1ã |
2ïžâ£ 掻çšé å | æç« çæ â æææ±ºå®ã»èªåŸè¡åãžæ¡å€§ | äºæ¥æ§é å šäœãåèšèšãåŸã |
3ïžâ£ å°å ¥äŸ¡å€ | å¹çåããã䟡å€åµåºã»æ°åžå Žéæããž | ROIã¯ãåæžããããåµåºããžã2ã |
4ïžâ£ æŠå¿µçè§£ | éçãšåŒ·ã¿ã®æ£ç¢ºãªçè§£ãéµ | 誀解ãã倱æã®æå€§èŠå |
5ïžâ£ å°å ¥æºå | ç®çã»KPIã»è©äŸ¡ææšã®æç¢ºå | ææ§ãªç®çã¯è¿·èµ°ã®åå |
6ïžâ£ å®è£ ããã»ã¹ | ãç®çâããŒã¿âã¢ãã«âè©äŸ¡âæ¹åãã®èšèš | æåŠã¯âããã»ã¹èšèšâãæ±ºããã3ã |
7ïžâ£ 倱æåé¿ | æè¡ã§ã¯ãªãâèšèšâã®æ¬ é¥ã倱æã®æ¬è³ª | 粟床ã§ã¯ãªãæ§é ãã«ã®ã4ã |
8ïžâ£ æåäºäŸ | æåäŒæ¥ã¯ãAIåæã§æ¥åãåæ§ç¯ã | è£å©ã§ã¯ãªãâåæâãšããŠçµã¿èŸŒãã5ã |
9ïžâ£ æªæ¥æŠç¥ | ãèªåŸã»å調ã»çµ±åããç«¶äºåã®æºæ³ | âAIåæOSâæ§ç¯ãå¿ é ã6ã |
ð FAQ | èª€è§£ãšæµæã®è§£æ¶ãå°å ¥æåã®åæ | æè¡ä»¥äžã«ãçè§£ã®èšèšããéèŠ |
ð æ¬¡ã®äžæ â ãAIãçµã¿èŸŒãã æªæ¥ããèšèšãã
ããããã¯ããçè§£ãããæ®µéã§ã¯ãªãã**âæŠç¥ãšããŠå®è£
ããâ**ãã§ãŒãºã§ãã
æåäŒæ¥ãå
±éããŠè¡ã£ãŠããã¢ã¯ã·ã§ã³ã¯ã次ã®3ã¹ãããã«æŽçã§ããŸãã
â Step 1. çŸç¶æ£åžã â æåã®50ïŒ ã¯ããã§æ±ºãŸã
- ð æ¥åããã»ã¹ãå¯èŠåãããAIã䟡å€ãåºããé åãããããã³ã°
- ð¯ 課é¡ã»KPIã»è©äŸ¡ææšãææåããããªãAIãå¿ èŠãããå®çŸ©
- ð 瀟å ãã¬ããžã»FAQã»ããã¥ã¢ã«ãªã©ã掻çšå¯èœãªããŒã¿è³ç£ãæŽç
ð ãã€ã³ãïŒ
McKinseyã¯ã課é¡èšå®ãšããŒã¿æŽçãææ§ãªAIãããžã§ã¯ãã®70ïŒ
以äžãPoCæ¢ãŸãããšææããŠããŸãã4ãã
â Step 2. å°ãã詊ã â âæåäœéšâãå ã«äœã
- 𧪠ææãªãŠãŒã¹ã±ãŒã¹ã1ã€éžå®ããPoCã宿œ
- ð 粟床ã»åçŸæ§ã»ã³ã¹ãã»æ¹åç¹ã枬å®ãããã¬ããžãèç©
- ð§° ããã³ããèšèšã»è©äŸ¡åºæºã»éçšã«ãŒã«ãæšæºåããŠåå©çšå¯èœã«
ð ãã€ã³ãïŒ
Deloitteã®èª¿æ»ã§ã¯ãå°èŠæš¡ãªæåäºäŸããå
šç€Ÿå±éããäŒæ¥ã®æåçã¯2å以äžãšå ±åãããŠããŸãã5ãã
â Step 3. æ¡åŒµãšçµ±å â âAIåæOSâãžã®é²å
ãAIåæOSããšã¯ãæææ±ºå®ã»ç¥èæ€çŽ¢ã»èªååŠçãæšæºæ©èœãšããŠæ¥åã«çµã¿èŸŒãŸããç¶æ
ãæããŸãã
å
·äœçã«ã¯ã以äžã®3å±€ãçµ±åããããšãéµãšãªããŸãïŒ
ã¬ã€ã€ãŒ | å 容 | KPIäŸ |
---|---|---|
ð§ ç¥èçµ±åå±€ | 瀟å FAQãææžãRAGã»ãã¯ã¿ãŒDBã§æ€çŽ¢ã»æŽ»çš | æ€çŽ¢æéâ²70%ãåç粟床90ïŒ ä»¥äž |
ðª¶ æææ±ºå®å±€ | ã¢ãã«åºåãæææ±ºå®æ¯æŽã·ã¹ãã ã«çµã¿èŸŒã¿ | ææ¡æ¡çšçÃ1.5åã倿æéâ²30ïŒ |
â èªååå±€ | API飿ºã»ã¯ãŒã¯ãããŒèªååŠç | 人çå·¥æ°â²50%ãåŠçæéâ²60ïŒ |
ð ãã€ã³ãïŒ
ãã®æ®µéãéæããäŒæ¥ã¯ãAIã®äŸ¡å€ããåãªãèªååãã§ã¯ãªããçµç¹æ§é ã®åå®çŸ©ããšããŠå
åšåããŸãã6ãã
ð§ æŠç¥çèŠç¹ïŒãAIãâ䜿ãåŽâãããâAIã§æªæ¥ãåµãåŽâãžã
ä»åŸããAIãå°å
¥ããäŒæ¥ãã¯æ¥å¢ããŸãã
ãããããAIãåæã«äºæ¥æ§é ãåèšèšããäŒæ¥ãã¯ããäžéšã§ãã
ãããŠããã®âäžéšâãããæ¬¡ã®åžå Žãåµããç«¶äºè»žãã®ãã®ãå¡ãæ¿ããŸãã
â
ãAIãå°å
¥ããäŒæ¥ãã¯ççºçã«å¢å ã1ã
â
ãAIã§æ§é ãåèšèšããäŒæ¥ãã¯ããäžæ¡ãã5ã
â
ãã®äžæ¡ãããæ¬¡äžä»£ã®åè
ãšãªã
ð æåæºå床ãã§ãã¯ãªã¹ã
- å°å ¥ç®çãšKPIã¯æç¢ºãïŒ
- ææã枬å®å¯èœãªãŠãŒã¹ã±ãŒã¹ãå®çŸ©ãããïŒ
- ããŒã¿æŽçã»æ£èŠåã»æ€çŽ¢èšèšã¯å®äºããŠãããïŒ
- ããã³ãã仿§ãšè©äŸ¡åºæºã¯ç宿žã¿ãïŒ
- æ¹åã»æŽæ°ãµã€ã¯ã«ã®äœå¶ã¯ãããïŒ
- å šç€Ÿå±éã»æè²ã»æåéžæã®ããŒããããã¯æããŠãããïŒ
â ãã¹ãŠYESã§ããã°ãããªãã®çµç¹ã¯**ãå°å ¥æåã®æºåãæŽã£ãã**ãšèšããŸãã
ðºïž äžé·æããŒããããïŒ1ã3幎ïŒ
ãã§ãŒãº | æé軞 | äž»ãªç®æš | å 容 |
---|---|---|---|
Phase 1 | 0ã6ã¶æ | PoCã»åæå°å ¥ | ææãåºãé åã§å°èŠæš¡å°å ¥ã»è©äŸ¡ææšç¢ºç« |
Phase 2 | 6ã18ã¶æ | 暪å±éã»æšæºå | éšé飿ºã»RAG/DBçµ±åã»èªåååºç€æŽå |
Phase 3 | 18ã36ã¶æ | ãAIåæOSãå | æææ±ºå®ã»è©äŸ¡å¶åºŠã»æåãŸã§åæ§ç¯ |
ð¯ æçµçµè«ïŒãæªæ¥ã¯âå°å ¥âã§ã¯ãªãâèšèšâããçãŸããã
AIã¯âæªæ¥ãå€ããéæ³âã§ã¯ãããŸããã
**æªæ¥ãèšèšããããã®âåºç€â**ã§ãã
ãã©ãã«å°å
¥ããããã§ã¯ãªãããã©ãçµã¿èŸŒã¿ãã©ããªæ§é ãæãããã
ãã®æŠç¥ã®æ·±ããããã3幎åŸã»5幎åŸã®ç«¶äºåãæ±ºå®ããŸãã
ð 仿¥ã®äžæ©ããæªæ¥ã®åžå Žå°å³ãå€ããã
ââä»ãããâæŠç¥âãâçŸå®âãžãšåããæã§ãã
ð åèæç®
ã1ã McKinsey & Company, The State of AI 2024, 2024.
ã2ã BCG, Whereâs the Value in AI?, 2024.
ã3ã BCG, Generative AI Roadmap for Leaders, 2024.
ã4ã McKinsey & Company, Scaling AI Successfully, 2024.
ã5ã Deloitte, AI Transformation Report, 2024.
ã6ã McKinsey & Company, Enterprise AI Playbook, 2025.
ð å 責äºé
æ¬èšäºã¯äžè¬çãªæ å ±æäŸãç®çãšããç¹å®ã®äŒæ¥ã»å人ã®è©äŸ¡ãæå³ãããã®ã§ã¯ãããŸãããäºäŸã»çµ±èšã»åŒçšã¯å ¬éæ å ±ãŸãã¯äžè¬åãããã±ãŒã¹ã«åºã¥ããã®ã§ãããææã»å¹æã¯å°å ¥æ¡ä»¶ãéçšäœå¶ã«ããç°ãªããŸããæ³ä»€ã»èŠå¶ã»ç€Ÿå èŠçšã®éµå®ã¯èªè ã®è²¬ä»»ã«ãããŠã確èªãã ããã